Skip to main content

Eisen-Schwefel- und andere Nichthäm-Eisen-Proteine

  • Chapter
Bioanorganische Chemie

Part of the book series: Teubner Studienbücher Chemie ((TSBC))

  • 97 Accesses

Zusammenfassung

Drei große Gruppen eisenhaltiger Proteine lassen sich aufgrund der Ligation des Metallzentrums unterscheiden. Ausschließlich durch Aminosäurereste, Bestandteile des Wassers (H2O, HO, O2−) oder Oxoanionen gebunden sind Eisenionen im photosynthetischen Reaktionszentrum (Abbn. 4.5 – 4.7), im Hämerythrin (Kap. 5.3), in Nichthäm-Eisen-Enzymen (Kap. 7.6) sowie in Transport- und Speicher-Proteinen des Metalls (s. Kap. 8). Neben diesen oft mehrzentrigen Systemen und dem in Kap. 5.2 und 6 vorgestellten Porphyrinchelat-gebundenen Häm-Eisen mit seinen vielfältigen Funktionen im Sauerstoff-Metabolismus (5.8) stellen Eisen-Schwefel(Fe/S)-Proteine eine dritte große und bedeutende Klasse dar (Thomson; Salemme; Cammack; Hall, Cammack, Rao).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • A.J. Thomson, in (o), Part 1, S. 79: Iron-Sulphur Proteins

    Google Scholar 

  • F.R. Salemme, Annu. Rev. Biochem. 46 (1977) 299: Structure and function of cytochromes c

    Google Scholar 

  • R. Cammackin (y), Vol. 38 (1992), S. 281: Iron-sulfur clusters in enzymes: Themes and variations

    Google Scholar 

  • D. O. Hall, R. Cammack, K.K. Rao, Chem. Unserer Zeit 11 (1977) 165: Chemie und Biologie der Eisen-Schwefel-Proteine

    Google Scholar 

  • R. Grabowski, A.E.M. Hofmeister, W. Buckel, Trends Biochem. Sei. 18 (1993) 297: Bacterial l-serine dehydratases: A new family of enzymes containing iron-sulfur clusters

    Google Scholar 

  • T.V. O’Halloran, Science 261 (1993) 715: Transition metals in control of gene expression

    Google Scholar 

  • H. Beinert, M.C. Kennedy, FASEB 7(1993) 1444: Aconitase, a two-faced protein: Enzyme and iron regulatory factor

    Google Scholar 

  • C. -F. Kuo, D.E. McRee, C.L. Fisher, S.F. O’Handley, R.P. Cunningham, J.A. Tainer, Science 258 (1992) 434: Atomic structure of the DNA repair [4Fe-4S] enzyme en-donuclease III

    Google Scholar 

  • B.A. Averill, W.H. Orme-Johnsonin (d), Vol. 7(1978), S. 127: Iron-sulfur proteins and synthetic analogs

    Google Scholar 

  • A. Müller, N. Schladerbeck, Chimia 39 (1985) 23: Systematik der Bildung von Elek-tronentransfer-Clusterzentren [FeßJ™* mit Relevanz zur Evolution von Ferredoxinen

    Google Scholar 

  • G. Wächtershäuser, System. Appl. Microbiol. 10 (1988) 207: Pyrite formation, the first energy source for life: A hypothesis

    Google Scholar 

  • M.W.W. Adamsin (y), Vol. 38 (1992), S. 341: Novel iron-sulfur centers in metalloen-zymes and redox proteins from extremely thermophilic bacteria

    Google Scholar 

  • E. Blöchl, M. Keller, G Wächtershäuser, K.O. Stetter, Proc. Natl. Acad. Sei. USA 89 (1992) 8117: Reactions depending on iron sulfide and linking geochemistry with biochemistry

    Google Scholar 

  • R.J.P. Williams, Nature (London) 343 (1990) 213: Iron and the origin of life

    Google Scholar 

  • K. Bosecker, Metall 34 (1980) 36: Bakterielles Leaching - Metallgewinnung mit Hilfe von Bakterien

    Google Scholar 

  • D. K. Ewart, M.N. Hughesin (y), Vol. 36 (1991), S. 103: The extraction of metals from ores using bacteria

    Google Scholar 

  • M.N. Hughes, R.K. Poole: Metals and Micro-organisms, Chapman Hall, London, 1989

    Google Scholar 

  • A. S. Moffat, Science 264 (1994) 778: Microbial mining boosts the environment, bottom line

    Google Scholar 

  • T. Tsukihara, K. Fukuyama, H. Tahara, Y. Katsube, Y. Matsuura, N. Tanaka, M. Kakudo, K. Wada, H. Matsubara, J. Biochem. 84 (1978) 1646: X-ray analysis of ferredoxin from Spirulina platensis. II. Chelate structure of active center

    Google Scholar 

  • M.S. Gebhard, J.C. Deaton, S.A. Koch, M. Millar, E.I. Solomon, J. Am. Chem. Soc. 112 (1990) 2217: Single-crystal spectral studies of Fe(SR)4– [R = 2,3,5,6–(Me)4C6H]: The electronic structure of the ferric tetrathiolate active site

    Google Scholar 

  • B. C. Prickril, D.M. Kurtz, Jr., J. LeGall, G. Voordouw, Biochemistry 30 (1991) 11118: Cloning and sequencing of the gene for ruberythrin from Desulfovibrio vulgaris (Hildenborough)

    Google Scholar 

  • H. A. Dailey, M.G. Finnegan, M.K. Johnson, Biochemistry 33 (1994) 403: Human ferrochelatase is an iron-sulfur protein

    Google Scholar 

  • J.A. Fee, K.L. Findling, T. Yoshida, R. Hille, G.E. Tarr, D.O. Hearshen, W.R. Dunham, E.P. Day, T.A. Kent, E. MOnck, J. Biol. Chem. 259 (1984) 124: Purification and characterization of the Rieske iron-sulfur protein from Thermus thermophilus

    Google Scholar 

  • T.A. Link, H. SchAgger, G. von Jagow, FEBS Lett. 204 (1986) 9: Analysis of the structures of the subunits of the cytochrome be I complex from beef heart mitochondria

    Google Scholar 

  • J.-M. Mouesca, G. Rius, B. Lamotte, J. Am. Chem. Soc. 115 (1993) 4714: Single-crystal proton ENDOR studies of the [Fe4S4]3+ cluster: Determination of the spin population distribution and proposal of a model to interpret the 1H NMR paramagnetic shifts in high-potential ferredoxins

    Google Scholar 

  • L. Noodleman, J.G. Norman, J.H. Osborne, A. Aizman, D.A. Case, J. Am. Chem. Soc. 107 (1985) 3418: Models for ferredoxins: Electronic structures of iron-sulfur clusters with one, two, and four iron atoms

    Google Scholar 

  • I. Bertini, F. Capozzi, S. Ciurli, C. Luchinat, L. Messori, M. Piccioli, J. Am. Chem. Soc. 114 (1992) 3332: Identification of the iron ions of high potential iron protein from chromatium vinosum within the protein frame through two-dimensional NMR eperi-ments

    Google Scholar 

  • G. Backes, Y. Mino, T.M. Loehr, T.E. Meyer, M.A. Cusanovich, W.V. Sweeney, E.T. Adman, J. Sanders-Loehr, J. Am. Chem. Soc. 113 (1991) 2055: The environment of Fe4S4 clusters in ferredoxins and high-potential iron proteins. New information from X-ray crystallography and resonance Raman spectroscopy

    Google Scholar 

  • R.H. Holm, Adv. Inorg. Chem. 38 (1992) 1: Trinuclear cuboidal and heterometallic cubane-type iron-sulfur clusters: New structural and reactivity themes in chemistry and biology

    Google Scholar 

  • M.M. Georgiadis, H. Komiya, P. Chakrabarti, D. Woo, J.J. Kornuc, D.C. Rees, Science 257 (1992) 1653: Crystallographic structure of the nitrogenase iron protein from azotobacter vinelandii

    Google Scholar 

  • G.N. George, S.J. George, Trends Biochem. Sci. 13 (1988) 369: X-ray crystallography and the spectroscopic imperative: The story of the [3Fe-4S] clusters

    Google Scholar 

  • C.R. Kissinger, E.T. Adman, L.C. Sieker, L.H. Jensen, J. Am. Chem. Soc. 110 (1988) 8721: Structure of the 3Fe-4S cluster in Desulfovibrio gigas ferredoxin II

    Google Scholar 

  • A.J. Pierik, W.R. Hagen, W.R. Dunham, R.H. Sands, Eur. J. Biochem. 206(1992) 705: Multi-frequency EPR and high-resolution MOssbauer spectroscopy of a putative [6Fe-6S] prismane-cluster-containing protein from Desulfovibrio vulgaris (Hildenbo-rough)

    Google Scholar 

  • J. Kim, D.C. Rees, Science 257(1992) 1677: Structural models of the metal centers in the nitrogenase molybdenum-iron protein

    Google Scholar 

  • M.S. Reynolds, R.H. Holm, Inorg. Chem. 27(1988) 4494: Iron-sulfur-thiolate basket clusters

    Google Scholar 

  • A. Müller, N.H. Schladerbeck, H. Bögge, J. Chem. Soc., Chem. Commun. (1987) 35: [Fe4S4]2~, the simplest synthetic analogue of a ferredoxin

    Google Scholar 

  • A. Müller, N.H. Schladerbeck, Naturwiss. 73 (1986) 669: Einfache aerobe Bildung eines [Fe4S4]2+ Clusterzentrums

    Google Scholar 

  • A. Nakamura, N. Ueyamain (u), S. 292: Importance of peptide sequence in electron-transfer reactions of iron-sulfur clusters

    Google Scholar 

  • S.J. Lippard, Angew. Chem. 100 (1988) 353: Oxoverbrückte Polyeisenzentren in Biologie und Chemie

    Google Scholar 

  • R.G. Wilkins, Chem. Soc. Rev. (1992) 171: Binuclear iron centres in proteins

    Google Scholar 

  • A.L. Feig, S.J. Lippardin (bb), S. 759: Reactions of non-heme iron(ll) centers with dioxygen in biology and chemistry

    Google Scholar 

  • M. Lammers, H. Follmann, Struct. Bonding (Berlin) 54 (1983) 27: The ribonucleotide reductases: A unique group of metalloenzymes essential for cell proliferation

    Google Scholar 

  • P. Reichard, Science 260 (1993) 1773: From RNA to DNA, why so many ribonucleotide reductases ?

    Google Scholar 

  • A. Willing, H. Follmann, G. Auling, Eur. J. Biochem. 170 (1988) 603: Ribonucleotide reductase of Brevibacterium ammoniagenes is a manganese enzyme

    Google Scholar 

  • P. Nordlund, B.-M. Sjöberg, H. Eklund, Nature (London) 345 (1990) 593: Three-dimensional structure of the free radical protein of ribonucleotide reductase

    Google Scholar 

  • U. Uhlin, H. Eklund, Nature (London) 370 (1994) 533: Structure of ribonucleotide reductase protein R1

    Google Scholar 

  • A. Ehrenbergin O), S. 27: Magnetic interaction in ribonucleotide reductase

    Google Scholar 

  • K. Wieghardt, Angew. Chem. 101 (1989) 1179: Die aktiven Zentren in manganhal-tigen Metalloproteinen und anorganische Metallkomplexe

    Google Scholar 

  • D.M. Kurtz, Chem. Rev. 90 (1990) 585: Oxo-and hydroxo-bridged diiron complexes: A chemical perspective on a biological unit

    Google Scholar 

  • M. Atta, P. Nordlund, A. Äberg, H. Eklund, M. Fontecave, J. Biol. Chem. 267(1992) 20682: Substitution of manganese for iron in ribonucleotide reductase from Escherichia coli

    Google Scholar 

  • A.C. Rosenzweig, S.J. Lippard, Acc. Chem. Res. 27 (1994) 229: Determining the structure of a hydroxylase enzyme that catalyzes the conversion of methane to methanol in methanotrophic bacteria

    Google Scholar 

  • S.-K. Lee, B.G. Fox, W.A. Froland, J.D. Lipscomb, E. Münck, J. Am. Chem. Soc. 115 (1993) 6450: A transient intermediate of the methane monooxygenase catalytic cycle containing an FelvFelv cluster

    Google Scholar 

  • J.B. Vincent, M. W. Crowder, B.A. Averill, Trends Biochem. Sei. 17 (1992) 105: Hydrolysis of phosphate monoesters: A biological problem with multiple chemical solutions

    Google Scholar 

  • N. Sträter, T. Klabunde, P. Tucker, H. Witzel, B. Krebs, Science (1995), im Druck: Crystal structure of a purple acid phosphatase containing a dinuclear Fe(lll)-Zn(ll) acitve site

    Google Scholar 

  • B. Bremer, K. Schepers, P. Fleischhauer, W. Haase, G. Henkel, B. Krebs, J. Chem. Soc., Chem. Commun. (1991) 510: The first binuclear iron(lll) complex with a terminally coordinated phosphato ligand - A model compound for the oxidized form of purple acid phosphatase from beef spleen

    Google Scholar 

  • E.G. Mueller, M.W. Crowder, B.A. Averill, J.R. Knowles, J. Am. Chem. Soc. 115 (1993) 2974: Purple acid phosphatase: A diiron enzyme that catalyzes a direct phopho group transfer to water

    Google Scholar 

  • L. Que, Jr. in (z), S. 347: Oxygen activation at nonheme iron centers

    Google Scholar 

  • T.A. Dix, S.J. Benkovic, Acc. Chem. Res. 21 (1988) 101: Mechanism of oxygen activation by pteridine-dependent monooxygenases

    Google Scholar 

  • D.H. Ohlendorf, J.D. Lipscomb, P.C. Weber, Nature (London) 336 (1988) 403: Structure and assembly of protocatechuate 3,4–dioxygenase

    Google Scholar 

  • J.C. Boyington, B.J. Gaffney, L.M. Amzel, Science 260 (1993) 1482: The three-dimensional structure of an arachidonic acid 15–lipoxygenase

    Google Scholar 

  • W. Minor, J. Steczko, J.T. Bolin, Z. Otwinowski, B. Axelrod, Biochemistry 32 (1993) 6320: Crystallographic determination of the active site iron and its ligands in soybean lipoxygenase L-1

    Google Scholar 

  • L.J. Ming, L. Que, A. Kriauciunas, C.A. Frolik, V.J. Chen, Inorg. Chem. 29 (1990) 1111: Coordination chemistry of the metal binding site of isopenicillin N synthase

    Google Scholar 

  • H. Jin, I.M. Turner, Jr., M.J. Nelson, R.J. Gurbiel, P.E. Doan, B.M. Hoffman, J. Am. Chem. Soc. 115 (1993) 5290: Coordination sphere of the ferric ion in nitrile hydratase

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 B. G. Teubner Stuttgart

About this chapter

Cite this chapter

Kaim, W., Schwederski, B. (1995). Eisen-Schwefel- und andere Nichthäm-Eisen-Proteine. In: Bioanorganische Chemie. Teubner Studienbücher Chemie. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-91893-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-91893-2_7

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-519-13505-0

  • Online ISBN: 978-3-322-91893-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics