Skip to main content

Katalyse durch Hämoproteine: Elektronenübertragung, Sauerstoffaktivierung und Metabolismus anorganischer Zwischenprodukte

  • Chapter
Bioanorganische Chemie

Part of the book series: Teubner Studienbücher Chemie ((TSBC))

  • 100 Accesses

Zusammenfassung

Eisenporphyrin-Komplexe besitzen neben der Fähigkeit zum stöchiometrischen Disauerstoff-Transport vielfältige katalytische Funktionen im biochemischen Geschehen. Neben dem eigentlichen Häm-System (5.8) kommen auch Eisenkomplexe mit teilreduzierten Porphyrinliganden wie etwa Chlorin (→ Häm d) oder Sirohäm vor (vgl. 6.20). Häm-enthaltende Enzyme sind an Elektronentransport und -akkumulation, an der kontrollierten Umsetzung sauerstoffhaltiger Zwischenprodukte wie etwa 0 2−2 , NO 2 oder S0 2−3 sowie zusammen mit anderen prosthetischen Gruppen an komplexen Redoxprozessen beteiligt (vgl. die Cytochrom c-Oxidase, Kap. 10.4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. G. von Jagow, W.D. Engel, Angew. Chem. 92 (1980) 684: Struktur und Funktion des energieumwandelnden Systems der Mitochondrion

    Google Scholar 

  2. C. Greenwoodin (o), Part 1, S. 43: Cytochromes c and cytochrome c containing enzymes

    Google Scholar 

  3. G.R. Moore, G.W. Pettigrew: Cytochromes c, Springer-Verlag, Berlin, 1990

    Book  Google Scholar 

  4. G. Palmer, J. Reedijk, Eur. J. Biochem. 200 (1991) 599: Nomenclature of electron-transfer proteins

    Google Scholar 

  5. G.N. George, T. Richards, R.E. Bare, Y. Gea, R.C. Prince, E.l. Stiefel, G.D. Watts, J. Am. Chem. Soc. 115 (1993) 7716: Direct observation of bis-sulfur ligation to the heme of bacterioferritin

    Google Scholar 

  6. F.R. Salemme, Annu. Rev. Biochem. 46 (1977) 299: Structure and function of cytochromes c

    Google Scholar 

  7. R.J.P. Williamsin M.K. Johnsonet al. (Hrsg.): Electron Transfer in Biology, Adv. Chem. Ser. 226 (1990), S. 3: Overview of biological electron transfer

    Google Scholar 

  8. H.B. Gray, B.G. Malmström, Biochemistry 20(1989) 7499: Long-range electron transfer in multisite metalloproteins

    Google Scholar 

  9. J.R. Miller, Nouv. J. Chim. 11 (1987) 83: Controlling charge separation through effects of energy, distance and molecular structure on electron transfer rates

    Google Scholar 

  10. R.C. Prince, G.N. George, Trends Biochem. Sei. 75(1990) 170: Tryptophan radicals

    Google Scholar 

  11. T.L. Poulosin (c), Vol. 7 (1988) 1: Heme enzyme crystal structures

    Google Scholar 

  12. H. Pelletier, J. Kraut, Science 258 (1992) 1748: Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c

    Google Scholar 

  13. J. Deisenhofer, H. Michel, Angew. Chem. 101 (1989) 872: Das photosynthetische Reaktionszentrum des Purpurbakteriums Rhodopseudomonas viridis (Nobel-Vortrag)

    Google Scholar 

  14. W.R. Scheidt, C.A. Reed, Chem. Rev. 81 (1981) 543: Spin-state/stereochemical relationships in iron porphyrins: Implications for the hemoproteins

    Google Scholar 

  15. G. Sugar, K.D. Egeberg, J.T. Sage, D. Morikis, P.M. Champion, J. Am. Chem. Soc. 109 (1987) 7896: Alteration of heme axial ligands by site-directed mutagenisis: A cytochrome becomes a catalytic demethylase

    Google Scholar 

  16. P.R. Ortiz de Montellano, Acc. Chem. Res. 20 (1987) 289: Control of the catalytic activity of prosthetic heme by the structure of hemoproteins

    Google Scholar 

  17. F. P. Guengerich, J. Biol. Chem. 266 (1991) 10019: Reactions and significance of cytochrome P-450 enzymes

    Google Scholar 

  18. T.D. Porter, M.H. Coon, J. Biol. Chem. 266 (1991) 13469: Cytochrome P-450

    Google Scholar 

  19. K. Ruckpaul, Pharm. Unserer Zeit 22 (1993) 296: Cytochrom P-450 abhängige Enzyme

    Google Scholar 

  20. D. Mansuy, Pure Appl. Chem. 66 (1994) 737: Cytochromes P-450 and model systems: Great diversity of catalyzed reactions

    Google Scholar 

  21. W.B. Jakoby, D. M. Ziegler, J. Biol. Chem. 265 (1990) 20715: The enzymes of detoxification

    Google Scholar 

  22. G. Fellenberg, Chemie der Umweltbelastung, 2. Aufl., Teubner, Stuttgart, 1992

    Google Scholar 

  23. D. Lenoir, H. Sandermann, Jr., Biol. Unserer Zeit 23 (1993) 363: Entstehung und Wirkung von Dioxinen

    Google Scholar 

  24. E. Mutschler: Arzneimittelwirkungen, Lehrbuch der Pharmakologie und Toxikologie, 6. Aufl., WVG, Stuttgart, 1991

    Google Scholar 

  25. H. Patzelt, W.D. Woggon, Helv. Chim. Acta 75 (1992) 523: O-Insertion into nonac-tivated C-H bonds: The first observation of 02 cleavage by a P-450 enzyme model in the presence of a thiolate ligand

    Google Scholar 

  26. R. Raag, T.L. Poulos, Biochemistry 28 (1989) 917: The structural basis for substrate-induced changes in redox potential and spin equilibrium in cytochrome P-450CAM

    Google Scholar 

  27. K.G. Ravichandran, S.S. Boddupalli, C.A. Hasemann, J.A. Peterson, J. Deisenhofer, Science 261 (1993) 731: Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450’s

    Google Scholar 

  28. N.C. Gerber, S.G. Sugar, J. Am. Chem. Soc. 114 (1992) 8742: Catalytic mechanism of cytochrome P-450: Evidence for a distal charge relay

    Google Scholar 

  29. D. Mandon, R. Weiss, M. Franke, E. Bill, A.X. Trautwein, Angew. Chem. 101 (1989) 1747: Ein Oxoeisenporphyrinat mit höherwertigem Eisen: Bildung durch lösungsmittelabhängige Protonierung eines Peroxoeisen(lll)-porphyrinat-Derivats

    Google Scholar 

  30. J.T. Groves, Y. Watanabe, J. Am. Chem. Soc. 110 (1988) 8443: Reactive iron porphyrin derivatives related to the catalytic cycles of cytochrome P-450 and peroxidase

    Google Scholar 

  31. K.L. Kostka, B.G. Fox, M.P. Hendrich, T.J. Collins, C.E.F. Richard, L.J. Wright, E. MCinck, J. Am. Chem. Soc. 115 (1993) 6746: High-valent transition metal chemistry

    Google Scholar 

  32. D.T. Sawyer, Comments Inorg. Chem. 6 (1987) 103: The nature of the bonding and valency for oxygen in its metal compounds

    Google Scholar 

  33. P.M. Champion, J. Am. Chem. Soc. 111 (1989) 3433: Elementary electronic excitations and the mechanism of cytochrome P450

    Google Scholar 

  34. W.A. Herrmann, J. Organomet. Chem. 300 (1986) 111: Zufallsentdeckung am Beispiel Rhenium: Oxo-Komplexe in hohen und niedrigen Oxidationsstufen

    Google Scholar 

  35. J. Everse, K.E. Everse, M.B. Grisham(Hrsg.): Peroxidases in Chemistry and Biology, Vol. 2, CRC Press, Boca Raton, 1990

    Google Scholar 

  36. T. Haag, F. Lingens, K.-H. van Pée, Angew. Chem. 103 (1991) 1550: Eine Metall- Ionen- und Cofaktor-unabhängige enzymatische Redoxreaktion: die Halogenierung durch bakterielle Nicht-Häm-Haloperoxidasen

    Google Scholar 

  37. S. Hashimoto, R. Nakajima, I. Yamazaki, T. Kotani, S. Ohtaki, T. Kitagawa, FEBS Lett. 248 (1989) 205: Resonance Raman characterization of hog thyroid peroxidase

    Google Scholar 

  38. H.E. Schoemaker, Reel. Trav. Chim. Pays-Bas 109 (1990) 255: On the chemistry of lignin biodégradation

    Google Scholar 

  39. J.H. Dawson, Science 240 (1988) 433: Probing structure-function relations in heme-containing oxygenases and peroxidases

    Google Scholar 

  40. K. Yamaguchi, Y. Watanabe, I. Morishima, J. Am. Chem. Soc. 115 (1993) 4058: Direct observation of the push effect on the O-O bond cleavage of acylperoxoiron(lll) porphyrin complexes

    Google Scholar 

  41. M.G. Peter, Angew. Chem. 101 (1989) 572: Chemische Modifikation von Biopolymeren durch Chinone und Chinonmethide

    Google Scholar 

  42. K.E. Hammelin (d), Vol. 28 (1992), S. 41: Oxidation of aromatic pollutants by lignin-degrading fungi and their extracellular peroxidases

    Google Scholar 

  43. G. Winkelmann(Hrsg.): Microbial Degradation of Natural Products, VCH Publishers, New York, 1992

    Google Scholar 

  44. P.M.H. Kroneck, J. Beuerle, W. Schumacherin (d), Vol. 28 (1992), S. 455: Metal-dependent conversion of inorganic nitrogen and sulfur compounds

    Google Scholar 

  45. T. Brittain, R. Blackmore, C. Greenwood, A.J. Thomson, Eur. J. Biochem. 209 (1992) 793: Bacterial nitrite-reducing enzymes

    Google Scholar 

  46. A.R. Butler, D.L.H. Williams, Chem. Soc. Rev. (1993) 233: The physiological role of nitric oxide

    Google Scholar 

  47. M.J. Clarke, J.B. Gaul, Struct. Bonding (Berlin) 81 (1993) 147: Chemistry relevant to the biological effects of nitric oxide and metallonitrosyls

    Google Scholar 

  48. P.L. Feldman, O.W. Griffith, D.J. Stuehr, Chem. Eng. News, Dezember 20 (1993) 26: The surprising life of nitric oxide

    Google Scholar 

  49. U. Förstermann, Biol. Unserer Zeit 24 (1994) 62: Stickoxid (NO): Umweltgift und körpereigener Botenstoff

    Google Scholar 

  50. J.S. Stamler, D.J. Singel, J. Loscalzo, Science 258 (1992) 1898: Biochemistry of nitric oxide and its redox-activated forms

    Google Scholar 

  51. S.A. Liptonet al., Nature (London) 364 (1993) 626: A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds

    Google Scholar 

  52. E. Culotta, D.E. Koshland, Science 258 (1992) 1862: NO news is good news

    Google Scholar 

  53. A.L. Burnett, C.J. Lowenstein, D.S. Bredt, T.S.K. Chang, S.H. Snyder, Science 257 (1992) 401: Nitric oxide: A physiologic mediator of penile erection

    Google Scholar 

  54. M.A. Marletta, J. Biol. Chem. 268 (1993) 12231: Nitric oxide synthase structure and mechanism

    Google Scholar 

  55. A. Verma, D.J. Hirsch, C.E. Glatt, G.V. Ronnett, S.H. Snyder, Science 259 (1993) 381: Carbon monoxide. A putative neural messenger ?

    Google Scholar 

  56. C. K. Chang, R. Timkovich, W. Wu, Biochemistry 25 (1986) 8447: Evidence that heme d1 is a 1,3–porphyrindione

    Google Scholar 

  57. M.P. Hendrich, M. Logan, K.K. Andersson, D.M. Arciero, J.D. Lipscomb, A.B.Hooper, J. Am. Chem. Soc. 116 (1994) 11961: The active site of hydroxy/amine oxidoreductase from Nitrosomonas: Evidence for a new metal cluster in enzymes

    Google Scholar 

  58. H. Tributsch, J. Electroanal. Chem. 331 (1992) 783: On the significance of the simultaneity of electron transfer and cooperation in electrochemistry

    Google Scholar 

  59. D. E. McRee, D.C. Richardson, J.S. Richardson, L.M. Siegel, J. Biol. Chem. 261 (1986) 10277: The heme and Fe4S4 cluster in the crystallographic structure of Escherichia coli sulfite reductase

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 B. G. Teubner Stuttgart

About this chapter

Cite this chapter

Kaim, W., Schwederski, B. (1995). Katalyse durch Hämoproteine: Elektronenübertragung, Sauerstoffaktivierung und Metabolismus anorganischer Zwischenprodukte. In: Bioanorganische Chemie. Teubner Studienbücher Chemie. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-91893-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-91893-2_6

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-519-13505-0

  • Online ISBN: 978-3-322-91893-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics