Skip to main content

Die bioanorganische Chemie vorwiegend toxischer Metalle

  • Chapter
  • 98 Accesses

Part of the book series: Teubner Studienbücher Chemie ((TSBC))

Überblick

Die vorangegangenen Kapitel haben gezeigt, auf welche Weise anorganische Elemente in Form ihrer Verbindungen lebensnotwendig sein können. Bei nur genügend großer Dosis sind jedoch in jedem Falle Vergiftungserscheinungen zu erwarten (Paracelsussches Prinzip, vgl. Abb. 2.3). In bezug auf mögliche Toxizität (Hutzinger; Bodek et al.; Fellenberg; Irgolic, Martell; Martin; Schäfer et al.; Fergusson) existieren jedoch noch zwei weitere Gruppen anorganischer Elemente: solche, die aufgrund ihrer Seltenheit oder mangelnden Bioverfügbarkeit, z.B. der Unlöslichkeit bei pH 7, (noch) nicht als relevant für Lebensprozesse erkannt wurden, und solche Elemente, von denen bislang ausschließlich negative Effekte bekannt geworden sind (Abb. 17.1). Zu letzteren gehören vor allem die “weichen” thiophilen Schwermetalle Quecksilber, Thallium, Cadmium und Blei.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • O. Hutzinger(Hrsg.): The Handbook of Environmental Chemistry, Springer-Verlag, Berlin, ab 1980

    Google Scholar 

  • L. Bodeket al. (Hrsg.): Environmental Inorganic Chemistry, Pergamon Press, New York, 1988

    Google Scholar 

  • G. Fellenberg: Chemie der Umweltbelastung, Teubner, Stuttgart, 1992

    Google Scholar 

  • K.J. Irgolic, A.E. Martell(Hrsg.): Environmental Inorganic Chemistry, VCH, Deer-field Beach, 1985

    Google Scholar 

  • R.B. Martinin (d), Vol. 20 (1986) S. 21: Bioinorganic chemistry of metal ion toxicity

    Google Scholar 

  • S.G. Schäfer, B. Elsenhans, W. Forth, K. Schümannin H. Marquardt, S.G. Schäfer(Hrsg.): Lehrbuch der Toxikologie, Bl-Wiss.-Verl., Mannheim, 1994, S. 504: Metalle

    Google Scholar 

  • J.E. Fergusson: The Heavy Elements: Chemistry, Environmental Impact and Health Effects, Pergamon Press, Oxford, 1990

    Google Scholar 

  • S. Silver, T.K. Misra, R.A. Laddagain T.J. Beveridge, R.J. Doyle(Hrsg.): Metal Ions and Bacteria, Wiley, New York, 1989, S. 121: Bacterial resistance to toxic heavy metals

    Google Scholar 

  • C.T. Dameron, R.N. Reese, R.K. Mehra, A.R. Kortan, P.J. Carroll, M.L. Steigerwald, L.E. Brus, D.R. Winge, Nature (London) 338 (1989) 596: Biosynthesis of cadmium sulfide quantum semiconductor crystallites

    Google Scholar 

  • M.M. Jones, Comments Inorg. Chem. 13 (1992) 91: Newer chelating agents for in vivo toxic metal mobilization

    Google Scholar 

  • R.L. Boeckx, Anal. Chem. 58 (1986) 274A: Lead poisoning in children

    Google Scholar 

  • S. Hong, J.-P. Candelone, C.C. Patterson, C.F. Boutron, Science 265 (1994) 1841: Greenland ice evidence to hemispheric lead pollution two millenia ago by Greek and Roman civilizations

    Google Scholar 

  • J.O. Nriagu, J. Chem. Educ. 62 (1985) 668: Cupellation: The oldest quantitative chemical process

    Google Scholar 

  • D. M. Settle, C.C. Patterson, Science 207(1980) 1167: Lead in albacore: Guide to lead pollution in Americans

    Google Scholar 

  • K. Abu-Dari, F.E. Hahn, K.N. Raymond, J. Am. Chem. Soc. 112 (1990) 1519: Lead sequestering agents. 1. Synthesis, physical properties, and structures of lead thio-hydroxamato complexes

    Google Scholar 

  • W. Kowal, O.B. Beattie, H. Baadsgaard, P.M. Krahn, Nature (London) 343(1990) 319: Did solder kill Franklin’s men?

    Google Scholar 

  • O. Beattie, J. Geiger: Der eisige Schlaf, vgs, Köln, 1989

    Google Scholar 

  • G. Röderer, Biol. Unserer Zeit 15 (1985) 129: Benzinblei-Problematik: Zum Wirkungsmechanismus von Triäthylblei

    Google Scholar 

  • G. W. Goldstein, A.L. Betz, Sei. Am. 255(3) (1986) 70: The blood-brain barrier

    Google Scholar 

  • H. A. Dailey, C.S. Jones, S.W. Karr, Biochim. Biophys. Acta 999 (1989) 7: Interaction of free porphyrins and metalloporphyrins with mouse ferrochelatase. A model for the active site of ferrochelatase

    Google Scholar 

  • E. K. Silbergeld, FASEB J. 6 (1992) 3201: Mechanism of lead neurotoxicity, or looking beyond the lamppost

    Google Scholar 

  • K.J.R. Rosman, W. Chisholm, C.F. Boutron, J.P. Candelone, U. Görlach, Nature (London) 362 (1993) 333: Isotopic evidence for the source of lead in Greenland snows since the late 1960s

    Google Scholar 

  • N.M. Price, F.M.M Morel, Nature (London) 344 (1990) 658: Cadmium and cobalt substitution for zinc in a marine diatom

    Google Scholar 

  • H.H. Dieter, J. Abel, Biol. Unserer Zeit 17 (1987) 27: Metallothionein

    Google Scholar 

  • E. Grill, M.H. Zenk, Chem. Unserer Zeit 23 (1989)194: Wie schützen sich Pflanzen vor toxischen Schwermetallen?

    Google Scholar 

  • M.J. Stillman, F.C. Shaw, K.T. Suzuki(Hrsg.): Metallothioneins: Synthesis, Structure, and Properties of Metallothioneins, Phytochelatins, and Metal-Thiolate Complexes, VCH, New York, 1992

    Google Scholar 

  • W.F. Furey, A.H. Robbins, L.L. Clancy, D.R. Winge, B.C. Wang, C.D. Stout, Science 231 (1986) 704: Crystal structure of Cd,Zn metallothionein

    Google Scholar 

  • E. Grill, E.L. Winnacker, M.H. Zenk, Proc. Natl. Acad. Sei. USA 84 (1987) 439: Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous of metallothioneins

    Google Scholar 

  • H. Strasdeit, A.-K. Duhme, R. Kneer, M.H. Zenk, C. Hermes, H.-F. Nolting, J. Chem. Soc., Chem. Commun, (1991) 1129: Evidence for discrete Cd(SCys)4 units in cadmium phytochelatin complexes from EXAFS spectroscopy

    Google Scholar 

  • D.T. Jiang, S.M. Heald, T.K. Sham, M.J. Stillman, J. Am. Chem. Soc. 116 (1994) 11004: Structures of the cadmium, mercury, and zinc thiolate clusters in metallothionein: XAFS study of Zn7–MT, Cd7–MT, Hg7–MT, and Hg18–MT formed from rabbit liver metallothionein 2

    Google Scholar 

  • K.H. Nakagawa, C. Inouye, B. Hedman, M. Karin, T.D. Tullius, K.O. Hodgson, J. Am. Chem. Soc. 113 (1991) 3621: Evidence from EXAFS for a copper cluster in the metalloregulatory protein CUP2 from yeast

    Google Scholar 

  • T.V. O’Halloran, Science 261 (1993) 715: Transition metals in control of gene expression

    Google Scholar 

  • J.S. Thayerin (d) Vol. 29 (1993) 1: Global bioalkylation of the heavy elements

    Google Scholar 

  • S. Krishnamurthy, J. Chem. Educ. 69 (1992) 347: Biomethylation and environmental transport of metals

    Google Scholar 

  • K.T. Douglas, M.A. Bunni, S. R. Baindur, Int. J. Biochem. 22 (1990) 429: Thallium in biochemistry

    Google Scholar 

  • D. A. Labianca, J. Chem. Educ. 67(1990) 1019: A classic case of thallium poisoning and scientific serendipity

    Google Scholar 

  • A. Ludi, Chem. Unserer Zeit 22 (1988) 123: Berliner Blau

    Google Scholar 

  • E. K. Mellon, J. Chem. Educ. 54 (1977) 211: Alfred E. Stock and the insidious “Quecksilbervergiftung”

    Google Scholar 

  • M.J. Vimy, Chem. Ind. (London) (1995) 14: Toxic teeth: The chronic mercury poisoning of modern man

    Google Scholar 

  • J.G. Wright, M.J. Natan, F.M. MacDonnell, D.M. Ralston, T. O’Halloran, Prog. Inorg. Chem. 38 (1990) 323: Mercury(ll)-thiolate chemistry and the mechanism of the heavy metal biosensor MerR

    Google Scholar 

  • W.S. Sheldrick, P. Bell, Inorg. Chim. Acta 723(1986) 181: Characterization of metal binding sites for 8–azaadenine. Formation and X-ray structural analysis of methyl-mercury(ll) complexes

    Google Scholar 

  • M.J. Moore, M.D. Distefano, L.D. Zydowsky, R.T. Cummings, C.T. Walsh, Acc. Chem. Res. 23 (1990) 301: Organomercurial lyase and mercuric ion reductase: Nature’s mercury detoxification catalysts

    Google Scholar 

  • C.A. Phillips, T. Gladding, S. Maloney, Chem. Br. 30 (1994) 646: Clouds with a quicksilver lining

    Google Scholar 

  • J.O. Nriagu, Chem. Br. 30 (1994) 650: A precious legacy

    Google Scholar 

  • B. Corain, M. Nicolini, P. Zatta, Coord. Chem. Rev. 112 (1992) 33: Aspects of bioinorganic chemistry of aluminium(lll) relevant to the metal toxicity

    Google Scholar 

  • R.B. Martin, Acc. Chem. Res. 27(1994) 204: Aluminum: A neurotoxic product of acid rain

    Google Scholar 

  • J.P. Landsberg, B. McDonald, F. Watt, Nature (London) 360 (1992) 65: Absence of aluminium in neuritic plaque cores in Alzheimer’s disease

    Google Scholar 

  • T.P.A. Kruck, Nature (London) 363 (1993) 119: Aluminium - Alzheimer’s link?

    Google Scholar 

  • T.L. Feng, P.L. Gurian, M.D. Healy, A.R. Barron, Inorg. Chem. 29 (1990) 408: Aluminum citrate: Isolation and structural characterization of a stable trinuclear complex

    Google Scholar 

  • H.M. Marques, J. Inorg. Biochem. 41 (1991) 187: Kinetics of the release of aluminum from human serum dialuminum transferrin to citrate

    Google Scholar 

  • R. Kiss, I. Sovago, R.B. Martin, J. Am. Chem. Soc. 111 (1989) 3611: Complexes of 3,4–dihydroxyphenyl derivatives. 9. Al3* bonding to catecholamines and tiron

    Google Scholar 

  • G. Farrar, P. Altmann, S. Welch, O. Wychru, B. Ghose, J. Lejeune, J. Corbett, V. Prasher, J. Blair, Lancet 335 (1990) 747: Defective gallium-transferrin binding in Alzheimer disease and Down syndrome: Possible mechanism for accumulation of aluminum in brain

    Google Scholar 

  • D. N. Skilleter, Chem. Br. 26 (1990) 26: To Be or not to Be - the story of beryllium toxicity

    Google Scholar 

  • L.S. Newman, Science 262 (1993) 197: To Be2* or not to Be2*: Immunogenetics and occupational exposure

    Google Scholar 

  • O. Kumberger, H. Schmidbaur, Chem. Unserer Zeit 27 (1993) 310: Warum ist Beryllium so toxisch?

    Google Scholar 

  • P.H. Connett, K.E. Wetterhahn, J. Am. Chem. Soc. 707(1985) 4284: In vitro reaction of the carcinogen chromate with cellular thiols and carboxylic acids

    Google Scholar 

  • R.N. Bose, S. Moghaddas, E. Gelerinter, Inorg. Chem. 31 (1992) 1987: Long-lived chromium(IV) and chromium(V) metabolites in the chromium(VI)glutathione reaction: NMR, ESR, HPLC, and kinetic characterization

    Google Scholar 

  • P. O’Brien, J. Pratt, F.J. Swanson, P. Thronton, G. Wang, Inorg. Chim. Acta 169 (1990) 265: The isolation and characterization of a chromium(V) containing complex from the reaction of glutathione with chromate

    Google Scholar 

  • R.P. Farrell, P.A. Lay, Comments Inorg. Chem. 13 (1992) 133: New insights into the structures and reactions of chromium(V) complexes: Implications for chromium(VI) and chromium(V) oxidations of organic substrates and the mechanisms of chromium-induced cancers

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 B. G. Teubner Stuttgart

About this chapter

Cite this chapter

Kaim, W., Schwederski, B. (1995). Die bioanorganische Chemie vorwiegend toxischer Metalle. In: Bioanorganische Chemie. Teubner Studienbücher Chemie. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-91893-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-91893-2_17

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-519-13505-0

  • Online ISBN: 978-3-322-91893-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics