Skip to main content

Biologische Bedeutung anorganischer Nichtmetall-Elemente

  • Chapter
Book cover Bioanorganische Chemie

Part of the book series: Teubner Studienbücher Chemie ((TSBC))

  • 101 Accesses

Überblick

Aus der Gruppe der nichtmetallischen Elemente im oberen rechten Bereich des periodischen Systems (Abb. 1.3) gehören Kohlenstoff, Wasserstoff, Stickstoff, Sauerstoff, Schwefel, Phosphor und Chlor (Kirk) traditionell zur “normalen” Biochemie. Von den übrigen nicht- oder halbmetallischen Elementen sind die Edelgase (wegen geringer Reaktivität) sowie die stabilen Elemente Germanium, Antimon, Bismut und Tellur (vermutlich wegen ihrer Seltenheit) ohne bislang bekannte biologische Bedeutung. Über die Rolle der verbleibenden nichtmetallischen Elemente Bor, Silicium, Arsen, Selen, Fluor, Brom und lod sind Details nur zum Teil bekannt; immerhin erfolgten jedoch die erstmaligen Darstellungen der Elemente lod und Phosphor aus Rückständen von Lebewesen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • K.L. Kirk: Biochemistry of the Elemental Halogens and Inorganic Halides, Plenum Press, New York, 1991

    Book  Google Scholar 

  • E. Bengsch, F. Korte, J. Polster, M. Schwenk, V. Zinkernagel, Z. Naturforsch. 44c (1989) 777: Reduction in symptom expression of belladonna mottle virus infection of tobacco plants by boron supply and the antagonistic action of silicon

    Google Scholar 

  • F. H. Nielsen, FASEB J. 5 (1991) 2661: Nutritional requirements for boron, silicon, vanadium, nickel, and arsenic: Current knowledge and speculation

    Google Scholar 

  • N.T. Davies, Phil. Trans. Roy. Soc. London B 294 (1981) 171: An appraisal of the newer trace elements

    Google Scholar 

  • K.J. Irgolicin (p), S. 399: Arsenic in the environment

    Google Scholar 

  • O.M.Ni Dhubhghaill, P.J. Sadler, Structure and Bonding (Berlin) 78 (1991) 129: The structure and reactivity of arsenic compounds: biological activity and drug design

    Google Scholar 

  • P. Gugger, A.C. Willis, S.B. Wild, J. Chem. Soc., Chem. Commun. (1990) 1169: Enantioselective biotransformation of ethyl-n-propylarsinic acid by the mould scopu-lariopsis brevicaulis: Asymmetric synthesis of (R)-ethylmethyl-n-propylarsine

    Google Scholar 

  • B. P. Rosen, C.-M. Hsu, C.E. Karkaria, P. Kaur, J.B. Owolabi, L.S. Tisa, Biochim. Biophys. Acta 1018 (1990) 203: A plasmid-encoded anion-translocation ATPase

    Google Scholar 

  • H. Luecke, F.A. Quiocho, Nature (London) 347 (1990) 402: High specificity of a phosphate transport protein determined by hydrogen bonds

    Google Scholar 

  • G. Gassmann, D. Glindemann, Angew. Chem. 105 (1993) 749: Phosphan (PHg) in der Biosphäre

    Google Scholar 

  • G.W. Gribble, J. Chem. Educ. 71 (1994) 907: Natural organohalogens

    Google Scholar 

  • C. Dawes, J.M. ten Cate(Hrsg.), J. Dent. Res. (Special Issue) 69 (1990) 505–831: International symposium on fluorides: Mechanism of action and recommendations for use

    Google Scholar 

  • M. Diesendorf, Nature (London) 320(1986) 125: The mystery of declining tooth decay

    Google Scholar 

  • M. Meyer, D. O’Hag an, Chem. Br. 28 (1992) 785: Rare fluorinated natural products

    Google Scholar 

  • E.C. Jorgensen, Horm. Proteins Pept. 6 (1978) 57 und 107: Thyroid hormones and analogs

    Google Scholar 

  • N.M. Alexanderin E. Frieden(Hrsg.): Biochemistry of the Essential Ultratrace Elements, Plenum Press, New York, 1984, S. 33: Iodine

    Google Scholar 

  • M.J. Berry, L. Banu, P. R. Larsen, Nature (London) 349 (1991) 438: Type I iodothy-ronine deiodinase is a selenocysteine-containing enzyme

    Google Scholar 

  • P. Dürre, J.R. Andreesen, Biol. Unserer Zeit 76(1989) 12: Die biologische Bedeutung von Selen

    Google Scholar 

  • L. Flohe, W. Strassburger, W.A. Günzler, Chem. Unserer Zeit 21 (1987) 44: Selen in der enzymatischen Katalyse

    Google Scholar 

  • K. Forchhammer, A. Böck, Naturwissenschaften 78 (1991) 497: Biologie und Biochemie des Elements Selen

    Google Scholar 

  • A. Wendel(Hrsg.): Selenium in Biology and Medicine, Springer-Verlag, Berlin, 1989

    Google Scholar 

  • G.N. Schrauzer(Hrsg.): Selenium, Wiley, Chichester, 1990

    Google Scholar 

  • T.C. Stadtman, J. Biol. Chem. 266 (1991) 16257: Biosynthesis and function of selenocysteine-containing enzymes

    Google Scholar 

  • B. Douglas, D.H. McDaniel, J.J. Alexander: Concepts and Models of Inorganic Chemistry, 2nd Edition, Wiley, New York, 1983, S. 579, 580

    Google Scholar 

  • G. Tölg, R.P.H. Garten, Angew. Chem. 97 (1985) 439: Große Angst vor kleinen Mengen - die Bedeutung der analytischen Chemie in der modernen Industriegesellschaft am Beispiel der Spurenanalytik der Elemente

    Google Scholar 

  • H. Engelberg-Kulka, R. Schoulaker-Schwarz, Trends Biochem. Sei. 13 (1988) 419: A flexible genetic code, or why does selenocysteine have no unique codon?

    Google Scholar 

  • R.A. Arkowitz, R.H. Abeles, J. Am. Chem. Soc. 112 (1990) 870: Isolation and characterization of a covalent selenocysteine intermediate in the glycine reductase system

    Google Scholar 

  • E.D. Harris, FASEB J. 6 (1992) 2675: Regulation of antioxidant enzymes

    Google Scholar 

  • H. Sies, Eur. J. Biochem. 215 (1993) 213: Strategies of antioxidant defense

    Google Scholar 

  • J.M.C. Gutteridge, B. Halliwell, Trends Biochem. Sei. 15 (1990) 129: The measurement and mechanism of lipid peroxidation in biological systems

    Google Scholar 

  • W.A. Pryor, ACS Symp. Ser. 277 (1985) 77: Free radical involvement in chronic diseases and aging. The toxicity of lipid hydroperoxides and their decomposition

    Google Scholar 

  • R.L. Rusting, Sei. Am. 267(6) (1992) 86: Why do we age?

    Google Scholar 

  • I. Emerit, B. Chance(Hrsg.): Free Radicals and Aging, 2. Aufl., Birkhäuser, Basel, 1994

    Google Scholar 

  • O. Epp, R. Ladenstein, A. Wendel, Eur. J. Biochem. 133 (1983) 51: The refined structure of the selenoenzyme glutathione peroxidase at 0.2 nm resolution

    Google Scholar 

  • Z.-P. Wu, D. Hilvert, J. Am. Chem. Soc. 112 (1990) 5647: Selenosubtilisin as a glutathione peroxidase mimic

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 B. G. Teubner Stuttgart

About this chapter

Cite this chapter

Kaim, W., Schwederski, B. (1995). Biologische Bedeutung anorganischer Nichtmetall-Elemente. In: Bioanorganische Chemie. Teubner Studienbücher Chemie. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-91893-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-91893-2_16

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-519-13505-0

  • Online ISBN: 978-3-322-91893-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics