Skip to main content

Katalyse und Regulation bioenergetischer Prozesse durch die Erdalkalimetallionen Mg2+ und Ca2+

  • Chapter
  • 98 Accesses

Part of the book series: Teubner Studienbücher Chemie ((TSBC))

Zusammenfassung

Unter den vier nicht zu den Spurenelementen gerechneten Bio-Metallkationen nimmt Mg2+ aufgrund seines geringen lonenradius eine Sonderstellung ein (vgl. Tab. 13.1; Martin; Black, Huang, Cowan). Dieses Ion bevorzugt wegen des relativ kleinen Verhältnisses Radius/Ladung und der daraus folgenden Lewis-Acidität mehrfach negativ geladene Liganden, insbesondere Polyphosphate; im Gegensatz zum verwandten und in der katalytischen Funktion teilweise ähnlichen Zn2+ ist Mg2+ jedoch eindeutig ein “hartes” Elektrophil (vgl. Abb. 2.6), welches mit einfachen N- und S-Liganden wie His oder Cys keine inerten Komplexe mehr bildet. Darüber hinaus bevorzugt Mg2+ sehr stark die Koordinationszahl sechs mit weitgehend oktaedrischer Konfiguration, während die sonst in der biologischen Funktion vergleichbaren Ionen entweder zu niedrigeren (Zn2+) oder höheren Koordinationszahlen neigen (Ca2+). Daß jedoch von dieser Regel unter dem “entatischen Streß” durch ein Enzymprotein auch abgewichen werden kann, zeigt das Beispiel der Enolase (14.9).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • R.B. Martinin (d), Vol. 26 (1990), S. 1: Bioinorganic chemistry of magnesium, und nachfolgende Beiträge

    Google Scholar 

  • C.B. Black, H.-W. Huang, J.A. Cowan, Coord. Chem. Rev. 135/136 (1994) 165: Biological coordination chemistry of magnesium, sodium, and potassium ions. Protein and nucleotide binding sites

    Google Scholar 

  • I. Andersson, S. Knight, G. Schneider, Y. Lindqvist, T. Lundqvist, C.-L. Bränden, G.H. Lorimer, Nature (London) 337 (1989) 229: Crystal structure of the active site of ribulose-bisphosphate carboxylase

    Google Scholar 

  • W. Hinrichs, C. Kisker, M. Düvel, A. Müller, K. Tovar, W. Hillen, W. Saenger, Science 264 (1994) 418: Structure of the repressor-tetracycline complex and regulation of antibiotic resistance

    Google Scholar 

  • H. Schmidbaur, H.G. Classen, J. Helbig, Angew. Chem. 102 (1990) 1122: Asparagin- und Glutaminsäure als Liganden für Alkali- und Erdalkalimetalle: Strukturchemische Beiträge zum Fragenkomplex der Magnesiumtherapie

    Google Scholar 

  • H. Pelletier, M.R. Sawaya, A. Kumar, S.H. Wilson, J. Kraut, Science 264 (1994) 1891: Structures of ternary complexes of rat DNA polymerase ß, a DNA template-primer, and ddCTP

    Google Scholar 

  • A.M. Pyle, Science 261 (1993) 709: Ribozymes: A distinct class of metalloenzymes

    Google Scholar 

  • F.H. Westheimer, Science 235 (1987) 1173: Why nature chose phosphates

    Google Scholar 

  • J.B. Vincent, M.W. Crowder, B.A. Averill, Trends Biochem. Sei. 17 (1992) 105: Hydrolysis of phosphate monoesters: A biological problem with multiple chemical solutions

    Google Scholar 

  • L. Beese, T.A. Steitz, EMBO J. 10 (1991) 25: Structural basis for the 3’-5’ exonuc-lease activity of Escherichia coli DNA polymerase I: A two metal ion mechanism

    Google Scholar 

  • J. Aqvist, A. Warshel, J. Am. Chem. Soc. 772(1990) 2860: Free energy relationships in metalbenzyme-catalyzed reactions. Calculations of the effects of metal ion substitutions in staphylococcal nuclease

    Google Scholar 

  • A. Tsubouchi, T.C. Bruice, J. Am. Chem. Soc. 776(1994) 11614: Remarkable (= 1013) rate enhancement in phosphonate ester hydrolysis catalyzed by two metal ions

    Google Scholar 

  • H. Sigel, Coord. Chem. Rev. 100 (1990) 453: Mechanistic aspects of the metal ion promoted hydrolysis of nucleoside 5 -triphosphates

    Google Scholar 

  • R. Cini, Comments Inorg. Chem. 13 (1992) 1: X-ray structural studies of adenosine 5’-triphosphate metal compounds

    Google Scholar 

  • A.S. Tracey, J. S. Jaswal, M.J. Gresser, D. Rehder, Inorg. Chem. 29 (1990) 4283: Condensation reactions of aqueous vanadate with the common nucleosides

    Google Scholar 

  • E.G. Krebs, Angew. Chem. 105 (1993) 1173: Protein-Phosphorylierung und Zellregulation I (NoBEL-Vortrag)

    Google Scholar 

  • E. H. Fischer, Angew. Chem. 105 (1993) 1181: Protein-Phosphorylierung und Zellregulation II (NoBEL-Vortrag)

    Google Scholar 

  • H.L. De Bondt, J. Rosenblatt, J. Jancarik, H.D. Jones, D.O. Morgan, S.-H. Kim, Nature (London) 363 (1993) 595: Crystal structure of cyclin-dependent kinase 2

    Google Scholar 

  • D.T. Lodato, Biochemisty 26 (1987) 2243: Structure of the oxalate-ATP complex with pyruvate kinase: ATP as a bridging ligand for the two divalent cations

    Google Scholar 

  • F. J. Kayne, J. Reuben, J. Am. Chem. Soc. 92 (1970) 220: Thallium-205 nuclear magnetic resonance as a probe for studying metal ion binding to biological macro-molecules. Estimate of the distance between the monovalent and divalent activators of pyruvate kinase

    Google Scholar 

  • K.R.H. Repke, R. Schön, Biochim. Biophys. Acta 1154 (1992) 1: Chemistry and energetics of transphosphorylations on the mechanism of Na+/K+-transporting ATPase: An attempt at a unifying model

    Google Scholar 

  • L. Lebioda, B. Stec, J. Am. Chem. Soc. 7 77 (1989) 8511: Crystal structure of holo-enolase refined at 1.9 A resolution: Trigonal-bipyramidal geometry of the cation binding site

    Google Scholar 

  • F.L. Siegel, Struct. Bonding (Berlin) 77(1973) 221: Calcium-binding proteins

    Google Scholar 

  • L.J. Anghileri(Hrsg.): The Role of Calcium in Biological Systems, Vol. IV, CRC Press, Boca Raton, 1987

    Google Scholar 

  • C. Gerday, L. Bolis, R. Gilles(Hrsg.): Calcium and Calcium Binding Proteins, Springer-Verlag, Berlin, 1988

    Google Scholar 

  • D. Pietrobon, F. Di Virgilio, T. Pozzan, Eur. J. Biochem. 193 (1990) 599: Structural and functional aspects of calcium homeostasis in eukaryotic cells

    Google Scholar 

  • J.C. Rüegg, Naturwissenschaften 74 (1987) 579: Calcium-Regulation der Muskelkontraktion

    Google Scholar 

  • G. Cornelius, Naturw. Rundschau 47 (1994) 181: Signalüberträger in der Zelle - Second-Messenger-Forschung

    Google Scholar 

  • E. Carafoli, J.T. Penniston, Spektrum der Wissenschaften, Januar (1986) 76: Das Calcium-Signal

    Google Scholar 

  • H. Rasmussen, Spektrum der Wissenschaften, Dezember (1989) 128: Der Membrankreislauf von Calcium als intrazelluläres Signal

    Google Scholar 

  • S. Klumpp, J.E. Schultz, Pharm. Unserer Zeit 14 (1983) 19: Calcium und Calmodulin

    Google Scholar 

  • D. M.E. Szebenyi, K. Moffat, J. Biol. Chem. 261 (1986) 8761: The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine

    Google Scholar 

  • S. Goldmann, J. Stoltefuss, Angew. Chem. 103 (1991) 1587: 1,4–Dihydropyridine: Einfluß von Chiralität und Konformation auf die Calcium-antagonistische und -agoni-stische Wirkung

    Google Scholar 

  • R. Fossheim, K. Svarteng, A. Mostad, C. Romming, E. Shefter, D.J. Triggle, J. Med. Chem. 25 (1982) 126: Crystal structures and pharmacological activity of calcium channel antagonists

    Google Scholar 

  • O. Bachs, N. Agell, E. Carafoli, Biochim. Biophys. Acta 1113 (1992) 259: Calcium and calmodulin function in the cell nucleus

    Google Scholar 

  • E. Carafoli, FASEB J. 8 (1994) 993: Biogenesis: Plasma membrane calcium ATPase: 15 years of work on the purified enzyme

    Google Scholar 

  • R.Y. Tsien, Chem. Eng. News, July 18 (1994) 34: Fluorescence imaging creates a window on the cell

    Google Scholar 

  • M. Ochsner-Bruderer, T. Fleck, Nachr. Chem. Tech. Lab. 41 (1993) 997: Fluorimetrische Bestimmung der intrazellulären Calciumionen-Konzentration

    Google Scholar 

  • T. Hirano, I. Mizoguchi, M. Yamaguchi, F.-Q. Chen, M. Ohashi, Y. Ohmiya, F.I. Tsuji, J. Chem. Soc., Chem. Commun. (1994) 165: Revision of the structure of the light-emitter in aequorin bioluminescence

    Google Scholar 

  • A.M. Albrecht-Gary, S. Blanc-Parasote, D.W. Boyd, G. Dauphin, G. Jeminet, J. Juil-lard, M. Prudhomme, C. Tissier, J. Am. Chem. Soc. 111 (1989) 8598: X-14885A: An ionophore closely related to calcimycin (A-23187). NMR, thermodynamic, and kinetic studies of cation selectivity

    Google Scholar 

  • Y. Ogoma, T. Shimizu, M. Hatano, T. Fujii, A. Hachimori, Y. Kondo, Inorg. Chem. 27 (1988) 1853: 43Ca nuclear magnetic resonance spectra of Ca2+-S 100 protein solutions

    Google Scholar 

  • A.L. Swain, E.L. Amma, Inorg. Chim. Acta 163 (1989) 5: The coordination polyhedron of Ca2+, Cd2+ in parvalbumin

    Google Scholar 

  • N.K. Vyas, M.N. Vyas, F.A. Quiocho, Nature (London) 327 (1987) 635: A novel calcium binding site in the galactose-binding protein of bacterial transport and Chemotaxis

    Google Scholar 

  • K.A. Satyshur, S.T. Rao, D. Pyzalska, W. Drendel, M. Greaser, M. Sundaralingam, J. Biol. Chem. 263 (1988) 1628: Refined structure of chicken skeletal muscle troponin C in the two-calcium state at 2–Ä resolution

    Google Scholar 

  • P. Chakrabarti, Biochemistry 29 (1990) 651: Systematics in the interaction of metal ions with the main-chain carbonyl group in protein structures

    Google Scholar 

  • W.I. Weis, K. Drickamer, W.A. Hendrickson, Nature (London) 360 (1992) 127: Structure of a C-type mannose-binding protein complexed with an oligosaccharide

    Google Scholar 

  • M. Ohnishi, R.A.F. Reithmeier, Biochemistry 26 (1987) 7458: Fragmentation of rabbit skeletal muscle calsequestrin: Spectral and ion binding properties of the carboxyl-terminal region

    Google Scholar 

  • P.J. McLaughlin, J.T. Gooch, H.G. Mannherz, A.G. Weeds, Nature (London) 364 (1993) 685: Structure of gelsolin segment 1–actin complex and the mechanism of filament severing

    Google Scholar 

  • F.A. Cotton, E.E. Hazen, M.J. Legg, Proc. Natl. Acad. Sci. U.S.A. 76 (1979) 2551: Staphylococcal nuclease: Proposed mechanism of action based on structure of enzyme-thymidine 3’,5’-bisphosphate-calcium ion complex at 1.5–A resolution

    Google Scholar 

  • A. S. Babu, J.S. Sack, T.J. Greenhough, C.E. Bugg, A.R. Means, W.J. Cook, Nature (London) 315 (1985)37: Three-dimensional structure of calmodulin

    Google Scholar 

  • S. Forsen, J. KOrdel, Acc. Chem. Res. 26 (1993) 7: The molecular anatomy of a calcium-binding protein

    Google Scholar 

  • W.E. Meador, A.R. Means, F.A. Quiocho, Science 257(1992) 1251: Target enzyme recognition by calmodulin: 2.4 A Structure of a calmodulin-peptide complex

    Google Scholar 

  • Kligman, D.C. Hilt, Trends Biochem. Sci. 13 (1988) 437: The S100 protein family

    Google Scholar 

  • P. Demange, D. Voges, J. Benz, S. Liemann, P. GOttig, R. Berendes, A. Burger, R. Huber, Trends Biol. Sci. 19 (1994) 272: Annexin V: The key to understanding ion selectivity and voltage regulation?

    Google Scholar 

  • I. Ochiai, J. Chem. Educ. 68 (19991) 10: Why calcium?

    Google Scholar 

  • C.H. Evans, Trends Biochem. Sci. (1983) 445: Interesting and useful biochemical properties of lanthanides

    Google Scholar 

  • K. Fujimori, M. Sorenson, O. Herzberg, J. Moult, F.C. Reinach, Nature (London) 345 (1990) 182: Probing the calcium-induced conformational transition of troponin C with site-directed mutants

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 B. G. Teubner Stuttgart

About this chapter

Cite this chapter

Kaim, W., Schwederski, B. (1995). Katalyse und Regulation bioenergetischer Prozesse durch die Erdalkalimetallionen Mg2+ und Ca2+ . In: Bioanorganische Chemie. Teubner Studienbücher Chemie. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-91893-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-91893-2_14

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-519-13505-0

  • Online ISBN: 978-3-322-91893-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics