Advertisement

Geometrische Algorithmen

  • Ralf Hartmut Güting
  • Stefan Dieker
Part of the Leitfäden der Informatik book series (XLINF)

Zusammenfassung

In diesem Kapitel betrachten wir Algorithmen und Datenstrukturen zur Lösung geometrischer Probleme. Solche Probleme werden etwa seit Mitte der siebziger Jahre systematisch innerhalb des Forschungsgebietes der algorithmischen Geometrie (computational geometry) studiert, das so definiert ist:

“Algorithmische Geometrie ist die Studie der algorithmischen Komplexität elementarer geometrischer Probleme.”

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturhinweise

  1. Shamos, M.I. [1975]. Problems in Computational Geometry. Unveröffentlichtes Manuskript.Google Scholar
  2. Shamos, M.I. [1978]. Computational Geometry. Ph. D. Thesis, Dept. of Computer Science, Yale University.Google Scholar
  3. Lee, D.T. [1996]. Computational Geometry. ACM Computing Surveys 28, 27–31.CrossRefGoogle Scholar
  4. Lee, D.T. [1995]. Computational Geometry. In: A. Tucker (Ed.), Handbook of Computer Science and Engineering. CRC Press, Boca Raton, FL.Google Scholar
  5. Sack, J. und J. Urrutia (Hrsg.) [1996]. Handbook on Computational Geometry. Elsevier Publishers, Amsterdam.Google Scholar
  6. Mehlhorn, K. [1984c]. Data Structures and Algorithms 3: Multi-dimensional Searching and Computational Geometry. Springer-Verlag, Berlin.Google Scholar
  7. Preparata, F.P., und M.I. Shamos [1985]. Computational Geometry. An Introduction. Springer-Verlag, Berlin.Google Scholar
  8. Edelsbrunner, H. [1987]. Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin.zbMATHGoogle Scholar
  9. O’Rourke, J. [1998]. Computational Geometry in C. 2nd Ed., Cambridge University Press, Cambridge, UK.CrossRefzbMATHGoogle Scholar
  10. Laszlo, M. [1996]. Computational Geometry and Computer Graphics in C++. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  11. Klein, R. [1997]. Algorithmische Geometrie. Addison-Wesley-Longman, Bonn.Google Scholar
  12. Ottmann, T., und R Widmayer [2002]. Algorithmen und Datenstrukturen. 4. Aufl., Spektrum Akademischer Verlag, Heidelberg.zbMATHGoogle Scholar
  13. Bentley, J.L., und T. Ottmann [1979]. Algorithms for Reporting and Counting Geometric Intersections. IEEE Transactions on Computers C-28, 643–647.Google Scholar
  14. Nievergelt, J., und F.P. Preparata [1982]. Plane-Sweep Algorithms for Intersecting Geometric Figures. Communications of the ACM 25, 739–747.CrossRefzbMATHGoogle Scholar
  15. Bentley, J.L., und D. Wood [1980]. An Optimal Worst-Case Algorithm for Reporting Intersections of Rectangles. IEEE Transactions on Computers C-29, 571–577.Google Scholar
  16. Bentley, J.L. [1977]. Solutions to Klee’s Rectangle Problems. Carnegie-Mellon University, Dept. of Computer Science, Manuskript.Google Scholar
  17. Güting, R.H., und D. Wood [1984]. Finding Rectangle Intersections by Divide-and-Conquer. IEEE Transactions on Computers C-33, 671–675.Google Scholar
  18. Güting, R.H., und W. Schilling [1987]. A Practical Divide-and-Conquer Algorithm for the Rectangle Intersection Problem. Information Sciences 42, 95–112.CrossRefMathSciNetzbMATHGoogle Scholar
  19. Güting, R.H. [1985]. Divide-and-Conquer in Planar Geometry. International Journal of Computer Mathematics 18, 247–263.CrossRefGoogle Scholar
  20. Güting, R.H. [1984b]. Optimal Divide-and-Conquer to Compute Measure and Contour for a Set of Iso-Rectangles. Acta Informatica 21, 271–291.CrossRefMathSciNetzbMATHGoogle Scholar
  21. Lipski, W., und F.P. Preparata [1980]. Finding the Contour of a Union of Iso-Oriented Rectangles. Journal of Algorithms 1, 235–246.CrossRefMathSciNetGoogle Scholar
  22. Güting, R.H. [1984a]. An Optimal Contour Algorithm for Iso-Oriented Rectangles. Journal of Algorithms 5, 303–326.CrossRefMathSciNetzbMATHGoogle Scholar
  23. Bentley, J.L. [1979]. Decomposable Searching Problems. Information Processing Letters 8, 244–251.CrossRefMathSciNetzbMATHGoogle Scholar
  24. Edelsbrunner, H. [1980]. Dynamic Data Structures for Orthogonal Intersection Queries. Technische Universität Graz, Institute für Informationsverarbeitung, Graz, Österreich, Report F 59.Google Scholar
  25. Edelsbrunner, H. [1983]. A New Approach to Rectangle Intersections. International Journal of Computer Mathematics 13, 209–229.CrossRefMathSciNetzbMATHGoogle Scholar
  26. McCreight, E.M. [1980]. Efficient Algorithms for Enumerating Intersecting Intervals and Rectangles. Xerox Palo Alto Research Center, Palo Alto, California, Report PARCCSL-80–9.Google Scholar
  27. Six, H.W., und D. Wood [1982]. Counting and Reporting Intersections of d-Ranges. IEEE Transactions on Computers C-31, 181–187.Google Scholar
  28. Edelsbrunner, H., und H.A. Maurer [1981]. On the Intersection of Orthogonal Objects. Information Processing Letters 13, 177–181.CrossRefMathSciNetGoogle Scholar
  29. McCreight, E.M. [1985]. Priority Search Trees. SIAM Journal on Computing 14, 257–276.CrossRefMathSciNetzbMATHGoogle Scholar
  30. Chazelle, B.M., und H. Edelsbrunner [1988]. An Optimal Algorithm for Intersecting Line Segments in the Plane. Proceedings of the 29th Annual Symposium on Foundations of Computer Science, White Plains, New York, 590–600.Google Scholar

Copyright information

© B. G. Teubner GmbH, Stuttgart/Leipzig/Wiesbaden 2003

Authors and Affiliations

  • Ralf Hartmut Güting
    • Stefan Dieker
      • 1
    1. 1.HagenDeutschland

    Personalised recommendations