Advertisement

Graphen und Graph-Algorithmen

  • Ralf Hartmut Güting
  • Stefan Dieker
Chapter
Part of the Leitfäden der Informatik book series (XLINF)

Zusammenfassung

Ein Graph stellt eine Menge von Objekten zusammen mit einer Beziehung (Relation) auf diesen Objekten dar. Wir betrachten einige Beispiele:
  1. (a)

    Objekte: Personen; Beziehung: Person A kennt Person B.

     
  2. (b)

    Spieler eines Tennisturniers; A spielt gegen B.

     
  3. (c)

    Städte; es gibt eine Autobahn zwischen A und B.

     
  4. (d)

    Stellungen im Schachspiel; Stellung A läßt sich durch einen Zug in Stellung B überführen.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturhinweise

  1. Euler, L. [ 1736 ]. Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Scientiarum Petropolitanae 8, 128–140.Google Scholar
  2. Harary, E [ 1994 ]. Graph Theory. Addison-Wesley Publishing Co., Reading, Massachusetts.Google Scholar
  3. Papadimitriou, C.H., und K Steiglitz [ 1998 ]. Combinatorial Optimization: Networks and Complexity. Dover Publications.Google Scholar
  4. Mehlhorn, K. [ 1984b ]. Data Structures and Algorithms 2: Graph-Algorithms and NP-Completeness. Springer-Verlag, Berlin.Google Scholar
  5. Gibbons, A. [ 1985 ]. Algorithmic Graph Theory. Cambridge University Press, Cambridge.zbMATHGoogle Scholar
  6. West, D.B. [ 2001 ]. Introduction to Graph Theory. 2nd Ed., Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  7. Wilson, R.J. [ 1996 ]. Introduction to Graph Theory. 4th Ed., Prentice Hall, Englewood Cliffs, NJ.zbMATHGoogle Scholar
  8. Jungnickel, D. [ 1998 ]. Graphs, Networks, and Algorithms. Springer-Verlag, Berlin.zbMATHGoogle Scholar
  9. Jungnickel, D. [ 1994 ]. Graphen, Netzwerke und Algorithmen. Spektrum Akademischer Verlag, Heidelberg.Google Scholar
  10. Khuller, S. und B. Raghavachari [ 1996 ]. Graph and Network Algorithms. ACM Computing Surveys 28, 43–45.CrossRefGoogle Scholar
  11. Dijkstra, E.W. [ 1959 ]. A Note on Two Problems in Connexion With Graphs. Numerische Mathematik 1, 269–271.CrossRefMathSciNetzbMATHGoogle Scholar
  12. Johnson, D.B. [ 1977 ]. Efficient Algorithms for Shortest Paths in Sparse Networks. Journal of the ACM 24, 1–13.CrossRefzbMATHGoogle Scholar
  13. Fredman, M.L., R.E. Tarjan [ 1987 ]. Fibonacci Heaps and Their Use in Network Optimization. Journal of the ACM 34, 596–615.CrossRefMathSciNetGoogle Scholar
  14. Hart, P.E., N.J. Nilsson und B. Raphael [ 1968 ]. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on System Science and Cybernetics SSC-4, 100–107.Google Scholar
  15. Nilsson, N.J. [ 1982 ]. Principles of Artificial Intelligence. Springer-Verlag, Berlin. Information Processing Letters 24, 247–250.MathSciNetGoogle Scholar
  16. Chazelle, B.M. [ 1986 ]. Reporting and Counting Segment Intersections. Journal of Computer and System Sciences, 156–182.Google Scholar
  17. Chazelle, B.M., und H. Edelsbrunner [ 1988 ]. An Optimal Algorithm for Intersecting Line Segments in the Plane. Proceedings of the 29th Annual Symposium on Foundations of Computer Science, White Plains, New York, 590–600.Google Scholar
  18. Comer, D. [ 1979 ]. The Ubiquitous B-Tree. ACM Computing Surveys 11, 121–137.CrossRefzbMATHGoogle Scholar
  19. Culberson, J. [1985]. The Effect of Updates in Binary Search Trees. In: Proceedings of the 17th Annual ACM Symposium on Theory of Computing, Providence, Rhode Island, 205–212.Google Scholar
  20. Culik, K., T. Ottmann und D. Wood [ 1981 ]. Dense Multiway Trees. ACM Transactions on Database Systems 6, 486–512.CrossRefMathSciNetzbMATHGoogle Scholar
  21. Deo, N. und C. Pang [ 1984 ]. Shortest-Path Algorithms: Taxonomy and Annotation. Networks 14, 275–323.CrossRefMathSciNetzbMATHGoogle Scholar
  22. Dijkstra, E.W. [ 1959 ]. A Note on Two Problems in Connexion With Graphs. Numerische Mathematik 1, 269–271.CrossRefMathSciNetzbMATHGoogle Scholar
  23. Dijkstra, E.W. [ 1982 ]. Smoothsort, an Alternative for Sorting in Situ. Science of Computer Programming 1, 223–233.CrossRefMathSciNetzbMATHGoogle Scholar
  24. Doberkat, E.E. [ 1984 ]. An Average Case Analysis of Floyd’s Algorithm to Construct Heaps. Information and Control 61, 114–131.CrossRefMathSciNetzbMATHGoogle Scholar
  25. Dvorak, S., und B. Durian [ 1988 ]. Unstable Linear Time 0(1) Space Merging. The Computer Journal 31, 279–283.CrossRefMathSciNetzbMATHGoogle Scholar
  26. Edelsbrunner, H. [ 1980 ]. Dynamic Data Structures for Orthogonal Intersection Queries. Technische Universität Graz, Institute für Informationsverarbeitung, Graz, Österreich, Report F 59.Google Scholar
  27. Edelsbrunner, H. [ 1983 ]. A New Approach to Rectangle Intersections. International Journal of Computer Mathematics 13, 209–229.CrossRefMathSciNetzbMATHGoogle Scholar
  28. Edelsbrunner, H. [ 1987 ]. Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin.zbMATHGoogle Scholar
  29. Ehrich, H.D., M. Gogolla, U.W. Lipeck [ 1989 ]. Algebraische Spezifikation abstrakter Datentypen. Eine Einführung in die Theorie. Teubner-Verlag, Stuttgart.Google Scholar
  30. Enbody, R.J., H.C. Du [ 1988 ]. Dynamic Hashing Schemes. ACM Computing Surveys 20, 85–113.CrossRefGoogle Scholar
  31. Euler, L. [ 1736 ]. Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Scientiarum Petropolitanae 8, 128–140.Google Scholar
  32. Flanagan, D. [ 2000 ]. Java in a Nutshell, Third Edition. O’Reilly & Associates.Google Scholar
  33. Floyd, R.W. [ 1962 ]. Algorithm 97: Shortest Paths. Communications of the ACM 5, 345.CrossRefGoogle Scholar
  34. Moffat, A., und T. Takaoka [ 1987 ]. An All Pairs Shortest Path Algorithm With Expected Time O(n2 log n). SIAM Journal on Computing 16, 1023–1031.CrossRefMathSciNetzbMATHGoogle Scholar
  35. Spira, P.M. [ 1973 ]. A New Algorithm for Finding All Shortest Paths in a Graph of Posi- tive Arcs in Average Time O(n2 loge n). SIAM Journal on Computing 2, 28–32.CrossRefMathSciNetzbMATHGoogle Scholar
  36. Warshall, S. [ 1962 ]. A Theorem on Boolean Matrices. Journal of the ACM 9, 11–12.CrossRefMathSciNetzbMATHGoogle Scholar
  37. Deo, N., C. Pang [ 1984 ]. Shortest-Path Algorithms: Taxonomy and Annotation. Networks 14, 275–323.CrossRefMathSciNetzbMATHGoogle Scholar
  38. Aho, A.V., J.E. Hoperoft und J.D. Ullman [ 1983 ]. Data Structures and Algorithms. Addison-Wesley Publishing Co., Reading, Massachusetts.Google Scholar
  39. Sharir, M. [ 1981 ]. A Strong-Connectivity Algorithm and Its Application in Data Flow Analysis. Computers and Mathematics with Applications 7, 67–72.CrossRefMathSciNetzbMATHGoogle Scholar
  40. Kruskal, J.B. [ 1956 ]. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. Proceedings of the American Mathematical Society 71, 48–50.CrossRefMathSciNetGoogle Scholar
  41. Prim, R.C. [ 1957 ]. Shortest Connection Networks and Some Generalizations. Bell System Technical Journal 36, 1389–1401.Google Scholar
  42. Yao, A.C. [ 1975 ]. An O(IE1 log log IVI) Algorithm for Finding Minimum Spanning Trees. Information Processing Letters 4, 21–23.CrossRefzbMATHGoogle Scholar
  43. Gabow, H.N., Z. Galil, T.H. Spencer und R.E. Tarjan [ 1986 ]. Efficient Algorithms for Finding Minimum Spanning Trees in Undirected and Directed Graphs. Combinatorica 6, 109–122.CrossRefMathSciNetzbMATHGoogle Scholar
  44. Fredman, M.L., und R.E. Tarjan [ 1987 ]. Fibonacci Heaps and Their Use in Network Optimization. Journal of the ACM 34, 596–615.CrossRefMathSciNetGoogle Scholar

Copyright information

© B. G. Teubner GmbH, Stuttgart/Leipzig/Wiesbaden 2003

Authors and Affiliations

  • Ralf Hartmut Güting
    • 1
  • Stefan Dieker
    • 1
  1. 1.HagenDeutschland

Personalised recommendations