Advertisement

Datentypen zur Darstellung von Mengen

  • Ralf Hartmut Güting
  • Stefan Dieker
Part of the Leitfäden der Informatik book series (XLINF)

Zusammenfassung

Die Darstellung von Mengen ist offensichtlich eine der grundlegendsten Aufgaben überhaupt. Wir haben im letzten Kapitel bereits einige Bausteine kennengelernt, die zur Darstellung von Mengen eingesetzt werden können (Listen, Bäume). In diesem Kapitel werden verschiedene Datentypen für Mengen betrachtet, die sich durch ihre Operationssätze unterscheiden; es geht nun darum, die Grundbausteine geeignet auszuwählen und zu verfeinern, um spezielle Operationen effizient zu unterstützen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturhinweise

  1. Knuth, D.E. [ 1998 ]. The Art of Computer Programming, Vol. 3: Sorting and Searching. 2nd Ed., Addison-Wesley Publishing Co., Reading, Massachusetts.Google Scholar
  2. Peterson, W.W. [ 1957 ]. Addressing for Random Access Storage. IBM Journal of Research and Development 1, 130–146.CrossRefGoogle Scholar
  3. Knuth, D.E. [ 1998 ]. The Art of Computer Programming, Vol. 3: Sorting and Searching. 2nd Ed., Addison-Wesley Publishing Co., Reading, Massachusetts.Google Scholar
  4. Morris, R. [ 1968 ]. Scatter Storage Techniques. Communications of the ACM 11, 35–44.CrossRefGoogle Scholar
  5. Maurer, W.D., und T. Lewis [ 1975 ]. Hash Table Methods. ACM Computing Surveys 7, 520.CrossRefGoogle Scholar
  6. Severance, D., und R. Duhne [ 1976 ]. A Practitioner’s Guide to Addressing Algorithms. Communications of the ACM 19, 314–326.CrossRefzbMATHGoogle Scholar
  7. Lum, V.Y., P.S.T. Yuen und M. Dodd [ 1971 ]. Key-To-Address Transform Techniques: A Fundamental Performance Study on Large Existing Formatted Files. Communications of the ACM 14, 228–239.CrossRefGoogle Scholar
  8. Enbody, R.J., und H.C. Du [ 1988 ]. Dynamic Hashing Schemes. ACM Computing Surveys 20, 85–113.CrossRefGoogle Scholar
  9. Windley, P.F. [ 1960 ]. Trees, Forests, and Rearranging. The Computer Journal 3, 84–88.CrossRefzbMATHGoogle Scholar
  10. Booth, A.D., und A.J.T. Colin [ 1960 ]. On the Efficiency of a New Method of Dictionary Construction. Information and Control 3, 327–334.CrossRefMathSciNetGoogle Scholar
  11. Hibbard, T.N. [ 1962 ]. Some Combinatorial Properties of Certain Trees With Applications to Searching and Sorting. Journal of the ACM 9, 13–28.CrossRefMathSciNetzbMATHGoogle Scholar
  12. Hibbard, T.N. [ 1962 ]. Some Combinatorial Properties of Certain Trees With Applications to Searching and Sorting. Journal of the ACM 9, 13–28.CrossRefMathSciNetzbMATHGoogle Scholar
  13. Culberson, J. [1985]. The Effect of Updates in Binary Search Trees. In: Proceedings of the 17th Annual ACM Symposium on Theory of Computing, Providence, Rhode Island, 205–212.Google Scholar
  14. Adelson-Velskii, G.M., und Y.M. Landis [ 1962 ]. An Algorithm for the Organization of Information. Soviet Math. Dokl. 3, 1259–1263.Google Scholar
  15. Baeza-Yates, R.A. [ 1995 ]. Fringe Analysis Revisited. ACM Computing Surveys 1995, 109–119.CrossRefGoogle Scholar
  16. Knuth, D.E. [ 1998 ]. The Art of Computer Programming, Vol. 3: Sorting and Searching. 2nd Ed., Addison-Wesley Publishing Co., Reading, Massachusetts.Google Scholar
  17. Williams, J.W.J. [ 1964 ]. Algorithm 232: Heapsort. Communications of the ACM 7, 347348.Google Scholar
  18. Knuth, D.E. [ 1998 ]. The Art of Computer Programming, Vol. 3: Sorting and Searching. 2nd Ed., Addison-Wesley Publishing Co., Reading, Massachusetts.Google Scholar
  19. Hoperoft, J.E., und J.D. Ullman [ 1973 ]. Set Merging Algorithms. SIAM Journal on Computing 2, 294–303.CrossRefMathSciNetGoogle Scholar
  20. Tarjan, R.E. [ 1975 ]. Efficiency of a Good But Not Linear Set Union Algorithm. Journal of the ACM 22, 215–225.CrossRefMathSciNetzbMATHGoogle Scholar
  21. Aho, A.V., J.E. Hoperoft und J.D. Ullman [ 1974 ]. The Design and Analysis of Computer Algorithms. Addison-Wesley Publishing Co., Reading, Massachusetts.zbMATHGoogle Scholar
  22. Galil, Z., und G.F. Italiano [ 1991 ]. Data Structures and Algorithms for Disjoint Set Union Problems. ACM Computing Surveys 23, 319–344.CrossRefGoogle Scholar

Copyright information

© B. G. Teubner GmbH, Stuttgart/Leipzig/Wiesbaden 2003

Authors and Affiliations

  • Ralf Hartmut Güting
    • 1
  • Stefan Dieker
    • 1
  1. 1.HagenDeutschland

Personalised recommendations