Skip to main content

On the Influence of the Geometry of Slender Bodies of Revolution and Delta Wings on Their Drag and Pressure Distribution at Transonic Speeds

  • Chapter
Contributions to the Development of Gasdynamics

Summary

With the help of the area rule the flow around delta wings and swallow-tailed wings in the transonic range is referred to the flow around (equivalent) bodies of revolution. Since the critical Mach-numbers — the limits of the transonic range and the linerarizable subsonic and supersonic region — lie quite near unity, the transonic properties can be determined by the calculation of the critical Mach-numbers, the calculation in the linearized ranges, and at Mach-number 1. For the latter the “parabolic method” [6] is used and applied together with a transonic method of characteristics to various bodies. The lower critical Mach-number is determined with sufficient accuracy by the linear theory. For the upper critical Mach-number the formula of Oswatitsch-Sjödin [15] is used.

After general considerations a geometrical system of bodies of revolution is introduced in the second section. The suitability of this system is checked by applying to the linear range in section 3. Section 4 gives some examples for wings equivalent to the bodies of revolution considered. In the next section the sonic flow is calculated and in the last section the results are given in a most general form by the transonic similarity.

The drag of the forebody (body before the maximum thickness) at M = 1 is, according to [6], half the linearized supersonic drag. This report shows now that the drag of the afterbody is practically equal to the whole supersonic drag of this part. Therefore the drag of the whole body at M = 1 lies nearer the supersonic value the greater the contribution of the afterbody is, or the shorter this part is.

It was known to the authors [5] that the linear subsonic theory holds very well for all subcritical Mach-numbers M . The calculations made in connection with the present work show that even the linear supersonic theory holds for all supersonic Mach-numbers. The small subsonic region on the tip at the upper critical Mach-number has no appreciable influence.

The area rule requires a correction if the wings or the equivalent bodies of revolution have too blunt ends. This is not a very serious problem, because in the important Mach-number range the ends of those wings lie in supersonic flow. This matter will be treated later.

This work has been published as a KTH AERO TN at the authors request. The research reported here was sponsored in part by the air research and development command, united states air force, under contract No. AF 61 (514)-811, through the European Office, ARDC.

Reprinted from KTH-AERO TN 42 (1956) with permission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Oswatitsch, Die theoretischen Arbeiten über schallnahe Strömung am Flugtechnischen Institut der Königlich Technischen Hochschule, Stockholm. Lecture at the 8th international congres on the theoretical and applied mechanics, Istanbul 1952.

    Google Scholar 

  2. K. Oswatitsch-F. Keune, Ein Äquivalenzsatz für nicht angestellte Flügel kleiner Spannweite in schallnaher Strömung. Z. für Flugwiss., Vol. 3 (1955) pp. 29–46.

    Google Scholar 

  3. K. Oswatitsch-F. Keune, Äquivalenzsatz, Ähnlichkeitssätze für schallnahe Geschwindigkeiten und Widerstand nicht angestellter Körper kleiner Spannweite. To be published in ZAMP, Zürich.

    Google Scholar 

  4. G. N. Ward, Supersonic flow past slender pointed bodies. The Quart. Journ. of Mechanica and Applied Mathematics, Vol. II, part 1 (mars 1949), p. 75.

    Article  Google Scholar 

  5. F. Keune-K. Oswatitsch, An integral equation theory for the transonic flow around slender bodies of revolution at zero incidence. KTH-Aero TN 37, Aeronautics Division, Royal Institute of Technology, Stockholm 1955.

    Google Scholar 

  6. K. Oswatitsch-F. Keune, The flow around bodies of revolution at Mach number one. Lecture at the high Speed conference 20–22 Januari 1955, Polytechnical Institute Brooklyn, N. Y.

    Google Scholar 

  7. F. Keune, Low aspect ratio wings with small thickness at zero lift in subsonic and supersonic flow. KTH-Aero TN 21, Aeronautics Division, Royal Institute of Technology, Stockholm, 15 Juni 1952.

    Google Scholar 

  8. F. Keune-K. Oswatitsch, Nicht angestellte Körper kleiner Spannweite in Unter- und Überschallströmung. Lecture at the 8th international congress on the theoretical and applied mechanics, Istanbul 1952, and published in Zeitschr. für Flugwiss., Vol. 1 (1953) pp. 137–145.

    Google Scholar 

  9. M. C. Adams-W. R. Sears, Slender body theory: Review and extensions. JAS-Preprint No. 383, July 1952;

    Google Scholar 

  10. M. C. Adams-W. R. Sears, Slender body theory: Review and extensions. Journ. Aeron. Sci., Vol. 20 (1953) p. 85.

    Google Scholar 

  11. M. A. Heaslet-H. Lomax, The calculation of pressure on slender airplanes in subsonic and supersonic flow. NACA TN 2900, 1953.

    Google Scholar 

  12. F. Keune, On the subsonic, transonic and supersonic flow around low aspect ratio wings with incidence and thickness. KTH-Aero TN 28, Aeronautics Division, Royal Institute of Technology, Stockholm 1953.

    Google Scholar 

  13. F. Keune, Einfluß von Spannweite, Dicke, Anstellwinkel und Machzahl auf die Strömung um Flügel kleiner und großer Spannweite. Zeitschr. für Flugwiss, Vol. 2 (1954) pp. 292 – 298.

    Google Scholar 

  14. K. Oswatitsch, Gasdynamik, Edition Springer, Wien 1952.

    Google Scholar 

  15. K. Oswatitsch, Charakteristiken — Methode für achsensymmetrische schallnahe Strömung. To be published.

    Google Scholar 

  16. K. Oswatitsch-L. Sjödin, Kegelige Überschallströmung in Schallnähe. Österr. Ing. Arch. Vol. 8 (1954) pp. 284–292.

    Google Scholar 

  17. H.W. Liepmann-A. E. Bryson Jr., Transonic flow past wedge sections, Journ. Aeron. Sci., Vol. 17 (1950) pp. 745–755.

    Google Scholar 

Download references

Authors

Editor information

Wilhelm Schneider Max Platzer

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH Braunschweig

About this chapter

Cite this chapter

Keune, F., Oswatitsch, K. (1980). On the Influence of the Geometry of Slender Bodies of Revolution and Delta Wings on Their Drag and Pressure Distribution at Transonic Speeds. In: Schneider, W., Platzer, M. (eds) Contributions to the Development of Gasdynamics. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-91082-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-91082-0_11

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-528-08452-3

  • Online ISBN: 978-3-322-91082-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics