Skip to main content

Abstract

The following sections contain the different contributions from the ECARP consortium to the resolution of the workshop test cases defined in section II. Each contribution contains a theoretical description of the optimization technique used by each partner and the results obtained by using this techniques for the resolution of some test cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. ECARP/TEC/3.1.2.1.A/93 report (25 August 1993)

    Google Scholar 

  2. Vanderplaats, G.N. (1987): ADS — A Fortran Program for Automated Design Synthesis. User Manual.

    Google Scholar 

  3. Zoutendijk, M. (1960): Methods of Feasible Directions. Elsevier Publishing Co, Amsterdam.

    MATH  Google Scholar 

  4. Jameson, A. and Caughey, D.A. (1977): Numerical Calculation of the Transonic Flow past a swept wing. ERDA Rep. COO-3077–140 Courant Institute New York University.

    Google Scholar 

  5. Farin, G. (1989): Curves and Surfaces for Computer Aided Geometric Design. Academic Press.

    Google Scholar 

  6. Green, J.E., Weeks, D.J. and Brooman, J.W.F. (1973): Improved entrapment method for calculating boundary layers and wakes in compressible flow. A.R.C. R& M 3791.

    Google Scholar 

  7. Bradshaw, P. and Ferris, D.H. (1971): Calculation of boundary layer development using the turbulent energy equation; compressible flow on adiabatic walls. Journal Fluid Mech., 46, pp 83–110.

    Article  Google Scholar 

  8. Abu-Ghannam, B.J. and Shaw, R. (1980): Natural transition of boundary layers — The effects of turbulence, pressure gradient and flow history. Journal of Mech. Eng. Sci., 22, pp 213–228.

    Article  Google Scholar 

Bibliography

  1. Hicks, R.M. (1981) Transonic Wing Design Using Potential Flow Codes — Successes and Failures. SAE paper 810565.

    Book  Google Scholar 

  2. Giles, M.B., Drela, M., Thompkins, W.T. (1985) Newton Solution of Direct and Inverse Transonic Euler Equations. AIAA, 85–1530.

    Google Scholar 

  3. Vanderplaats, G.N. (1979) An efficient Algorithn for Numerical Airfoil Optimization. AIAA, 79–0079.

    Google Scholar 

  4. Le Balleur, J.C. (1981) Strong Matching Method for Computing Transonic Viscous Flows Including Wakes and separations on Lifting Airfoils. La Recherche Airospatiale 1981–83.

    Google Scholar 

  5. Fornasier, L. (1987): HISSS — A Higher-Order Panel Method for Subsonic and Supersonic Attached Flow About Arbitrary Configurations. In: Panel Methods and Fluid Mechanics, Notes on Numerical Fluid Mechanics, Vol. 21. Vieweg Verlag.

    Google Scholar 

  6. Ehlers, F.E, et al. (1979): A Higher Order Panel Method for Linearized Supersonic Flow. NASA CR-3062.

    Google Scholar 

  7. Fornasier, L. (1984): Treatment of Supersonic Configurations by an Updated Low-Order Panel Method. J. of Aircraft, 21.

    Google Scholar 

  8. Vanderplaats, G.N. (1984): Numerical Optimization Techniques for Engineering Design. Mc Graw-Hill Company.

    MATH  Google Scholar 

  9. Schwarten, H., Stuke, H. Pressure controlled surfacesa 3D inverse panel method as a design tool. Computational Methods in Applied Sciences, (Jh. Hirsch, J. Périaux, E. Oñate ed., Elsevier, Amsterdam, London, New York, Tokyo, 1992, pp. 261–266.

    Google Scholar 

  10. Schwarten, H. Ein inverses, subsonisches 2D-Panelverfahrcn nach der Methode der kleinsten Quadrate zum Entwurf und zur Modifikation von Mchrclementprofden. DGLR-Jahrbuch 1987 (1) der Deutschen Gesellschaft für Luft-und Raumfahrt, pp. 163–170.

    Google Scholar 

  11. Greff, E., Forbrich, D., Schwarten, II. Application of direct inverse analogy method (DIVA) and viscous design optimization techniques. Proc. 3r Int. Conf. Inverse Des. Concepts and Optim. in Eng. Sci. ICIDES III, G. S. Dulikravich, ed., 1991

    Google Scholar 

  12. Maskew, B., Prediction of subsonic aerodynamic characteristics: a case for low order panel methods. Journal of Aircraft, Vol.19.No2, February 1982, pp. 157–163.

    Article  Google Scholar 

  13. Maskew, B., Program VSAERO. A Computer program for calculating the non-linear aerodynmic characteristics of arbitrary configurations. NASA-Contract NAS2–11945, December 1984.

    Google Scholar 

  14. Marquardt, D. W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Math., vol. 11, no. 2, (1963), pp. 431–441.

    Article  MathSciNet  MATH  Google Scholar 

  15. Press, H., Flannery, B., Teukolsky, S., Vetterling, W. Numerical recipes, Cambridge University Press, Cambridge 1986.

    Google Scholar 

  16. Kosmol, P. Methoden zur numerischen Behandlung nichtlinearer Gleichungen und Optimierungsaufgaben. B. G. Teubner, Stuttgart, 1989.

    MATH  Google Scholar 

  17. Yamaguchi, F., Curves and surfaces in computer aided geometric design. Springer Verlag, Berlin, Heidelberg, New York, 1988.

    MATH  Google Scholar 

  18. Hoschek, J., Lasser, D. Grundlagen der geometrischen Datenverarbeitung. B. G. Teubner, Stuttgart, 1989.

    MATH  Google Scholar 

  19. Farin, G., Curves and surfaces for computer aided geometric design. Academic Press, London, Sydney, Tokio, Toronto, 1990.

    MATH  Google Scholar 

  20. J. Periaux, M. Sefrioui, B. Stoufflet, B. Mantel, E. Laporte, Robust Genetic Algorithms for optimization problems in Aerodynamic Design, in Genetic Algorithms in Engineering and Computer Science, G. Winter, J. Periaux, M. Galan, P. Cuesta, eds, John Wiley, 1995.

    Google Scholar 

  21. Drela, M., Giles, M.B. (1987):ISES: A Two-Dimensional Viscous Aerodynamic Design and Analysis Code. AIAA-87–0424.

    Google Scholar 

  22. Drela, M. (1990): A User’s Guide to ISES V4.2. MIT Computational Fluid Dynamics Laboratory.

    Google Scholar 

  23. Vanderplaats, G.N. (1979): Approximation Concepts for Numerical Airfoil Optimization. NASA-TP-1370.

    Google Scholar 

  24. Vanderplaats, G.N. (1984): ADS — A Fortran Program for Automated Design Synthesis. NASA CR 172460, October 1984.

    Google Scholar 

  25. CEA, J. (1971). Optimisation, théorie et algorithmes. Dunod.

    MATH  Google Scholar 

  26. GILL, P., MURRAY, W., WRIGHT, M. (1981). Practical optimization. Academic Press.

    MATH  Google Scholar 

  27. HECHT, F. (1983). Ecoulement laminaire derrière une marche: utilisation de base à divergence nulle en éléments finis. Proceedings of the workshop on numerical analysis of laminar flow over a step, Bièvre, jan. 83.

    Google Scholar 

  28. Herskovits, J. (1991). An interior points method for non-linear constrained optimization. NATO/A SI conference on structural optimization, Berchtesgaden, Germany sept. 91.

    Google Scholar 

  29. Pironneau, O. (1982). On the transport-diffusion algorithm and its application to the Navier-Stokes equations. Num. Math. vol. 39, pp. 309–332, Springer Verlag.

    Google Scholar 

  30. Swearingen, J.D., Blackwelder R.F. (1987). The growth and breakdown of streamwise vortices in presence of a wall. Journal of Fluid Mech., vol. 182, pp. 255–290.

    Article  Google Scholar 

  31. F. Beux, A. Dervieux, M.-P. Leclercq, and B. Stoufflet. Techniques de controle optimal pour l’optimisation de forme en aérodynamique avec calcul exact du gradient, 1994. Revue Scientifique et Technique de la Défense.

    Google Scholar 

  32. L. Fezoui and B. Stoufflet. A Class of Implicit Upwind Schemes for Euler Simulations with Unstructured Meshes. J. Comput. Phys., 1991.

    Google Scholar 

  33. W. P. Huffman, R. G. Melvin, D. P. Young, F. T. Johnson, J. E. Bus-Soletti, M. B. Bieterman, and Craig L. Hilmes. Practical Design and Optimization in Computational Fluid Dynamics. AIAA Paper 93–3111, 1993.

    Google Scholar 

  34. M.-H. Lallemand. Schémas décentrés multigilles pour la résolution des équations d’Euler en éléments finis. PhD thesis, Université de Marseille, 1988.

    Google Scholar 

  35. N. Marco and A. Dervieux. Agglomeration Method applied to the Hierarchical Parametrization of a Skin Mesh in 3-D Aerodynamics. In Contributions to 12th month of European Project ECARP, April 1994.

    Google Scholar 

  36. G.D. Mortchelewicz. Résolution des équations d’Euler tridimensionnelles instationnaires en maillages non structurés. La Recherche Aérospatiale, (6): 17–25, Novembre-Décembre 1991.

    Google Scholar 

  37. S. Ta’asan. One Shot Methods for Optimal Control of Distributed Parameter Systems. I: Finite Dimensionnal Control. ICASE Report 91–2, 1991. NASA Contractor Report 187497.

    Google Scholar 

  38. S. Ta’asan and G. Kuruvila. Aerodynamic Design and Optimization in One-Shot. AIAA Paper 92–0025, 1992.

    Google Scholar 

  39. Fray, J.M.J., Slooff, J. W., Boerstoel, J. W. and Kassies, A., (1984):, Design of transonic airfoils with given pressure, subject to geometric constraints, NLR TR 84064 U.

    Google Scholar 

References

  1. J. A. van Egmond, Numerical optimization of target pressure distributions for subsonic and transonic airfoil design, AGARD CP 463, 1989.

    Google Scholar 

  2. J.P. van Wageningen and A.J. van der Wees, Selection of an optimization for highly nonlinear problems. Evaluation of MINOS for some standard testproblems and an aerodynamic design problem, NLR TR 91336 L, 1991.

    Google Scholar 

  3. C.Z. Janikow and Z. Michalewicz, An experimental comparison of binary and floating point representations in genetic algorithms. Proceedings of the fourth international conference on genetic algorithms, Morgan Kaufmann Publishers Inc., 1989.

    Google Scholar 

  4. H-P. Schwefel, Numerical Optimization of Computer Models, Wiley, Chichester, 1981.

    MATH  Google Scholar 

  5. Th. Bäck, A user’s guide to GENEsYs 1.0, University of Dortmund, 1992.

    Google Scholar 

  6. P.S. Granville, The calculation of the viscous drag of bodies of revolution, David Taylor Model Basin Rep. 849, 1953.

    Book  Google Scholar 

Bibliography

  1. Cebeci, T., and Bradshaw, P., (1977): Momentum Transfer in Boundary Layers, Hemisphere — McGraw-Hill.

    MATH  Google Scholar 

  2. Chaviaropouios, P., Dedoussis, V. and Papailiou, K.D., (1993): Compressible Flow Airfoil Design Using Natural Coordinates, Computer Methods in Applied Mechanics and Engineering 110, 131–142.

    Article  Google Scholar 

  3. Chaviaropouios, P., Dedoussis, V. and Papailiou, K.D., (1994): Single-Pass Method for the Solution of Inverse Potential and Rotational Problems. Part I: 2-D and Quasi 3-D Theory and Application, AGARD-R-803 Optimum Design Methods for Aerodynamics, 1.1–1.19»

    Google Scholar 

  4. Dedoussis, V., Chaviaropouios, P., and Papailiou, K.D., (1993): Rotational Compressible Inverse Design Method for Two-Dimensional, Internal Flow Configurations, AIAA Journal 31, No. 3, 551–558.

    Article  MATH  Google Scholar 

  5. Kiousis, P., Chaviaropoulos, P., and Papailiou, K.D. (1992): Meridional Flow Calculation Using Advanced CFD Techniques, ASME Paper 92-GT-325,

    Google Scholar 

  6. Koumandakis, M., Dedoussis, V., Chaviaropoulos P., and Papailiou, K.D., (1994) Design of Axisymmetric Channels with Rotational Flow, AIAA Journal of Propulsion and Power 10, No. 5, 729–735.

    Article  Google Scholar 

  7. Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., (1989): Numerical Recipies. The Art of Scientific Computing, Cambridge Univ. Press.

    Google Scholar 

  8. Saad, Y., and Schultz, U.M., (1983): GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, Res. Rep. YALEU/DCS/RR-254.

    Google Scholar 

  9. Squire, H.B., and Young, A.D., (1938): The Calculation of the Profile Drag of Aerofoils, ARC R & M No 1838.

    Google Scholar 

  10. Stanitz, I.D., (1953): Design of Two-Dimensional Channels with Prescribed Velocity Distributions Alonng the Channel Walls, NACA Report 1115.

    Google Scholar 

  11. Zedan, M., and Schneider, G.E., (1983): A Three-Dimensional Modified Strongly Implicit Procedure for Heat Conduction, AIAA Journal 21, No. 2, 295–303.

    Article  MATH  Google Scholar 

  12. Beux, F., Dervieux, A., Leclercq, M. P. and Stoufflet, B. Techniques de controle optimal pour l’optimisation de forma en aérodynamique avec calcul exact du gradient, Revue Scientifique et Technique de la Défense, 1994.

    Google Scholar 

  13. Bugeda, G. and Oñate, E. New adaptive techniques for structural problems, First European Conference on Numerical Methods in Engineering, Brussels, Belgium, September, 1992.

    Google Scholar 

  14. Bugeda, G. and Oñate, E. Optimum Aerodynamic Shape Design Including Mesh Adaptivity, International Journal for Numerical Methods in Fluids, bf 20, 915,924 (1995).

    Google Scholar 

  15. Cebeci, T. and Bradshaw, P., Momentun transfer in boundary layers. Hemisphere Publication Corporation, 1977.

    Google Scholar 

  16. Faux, I. D. and Pratt, M. J. Computational Geometry for Design and Manufacture, Edited by Ellis Horwood Limited, 1987.

    Google Scholar 

  17. Oñate, E. and Bugeda, G. A Study of Mesh Optimality Criteria in Adaptive Finite Element Analysis, Engineering Computations, 10, 307–321 (1993).

    Article  Google Scholar 

  18. Peraire, J., Morgan, K. and Peiró, J. Unstructured finite element mesh generation and adaptive procedures for CFD., AG ARD FDP: Specialist’s Meeting, Loen, Norway (1989).

    Google Scholar 

  19. Pironneau, O. Méthodes des éléments finis pour les fluides, Masson 1988.

    MATH  Google Scholar 

  20. Vossinis A. Optimisation de forme d’aile d’avion. Doctoral Thesis. 1993.

    Google Scholar 

  21. Zienkiewicz, O.G., and Zhu, J. Z. The superconvergent patch recovery and a posteriori error estimates. Part l:the recovery technique, International Journal for Numerical Methods in Engineering, 33, 1331–1364, 1992.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Periaux Gabriel Bugeda Panagiotis K. Chaviaropoulos Kyriakos Giannakoglou Stephane Lanteri Bertrand Mantel

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Fol, T. et al. (1998). Contributions to the Resolution of the Data Workshop Test Cases. In: Periaux, J., Bugeda, G., Chaviaropoulos, P.K., Giannakoglou, K., Lanteri, S., Mantel, B. (eds) Optimum Aerodynamic Design & Parallel Navier-Stokes Computations ECARP — European Computational Aerodynamics Research Project. Notes on Numerical Fluid Mechanics (NNFM), vol 61. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-90193-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-90193-4_3

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-90195-8

  • Online ISBN: 978-3-322-90193-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics