Advertisement

Literatur

  • Ferdinand Svaricek
Chapter
  • 59 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ackermann, J. 1972. Der Entwurf linearer Regelungssysteme im Zustandsraum. Regelungstechnik 7. 297–300.Google Scholar
  2. Ackermann, J. 1983. Abtastregelung Band II. Berlin: Springer.CrossRefGoogle Scholar
  3. Anderson, B.D.O. and J.B. Moore. 1981. Time-Varying Feedback Laws for Decentralized Control. IEEE Trans. Automat. Control 26. 1133–1139.MathSciNetzbMATHGoogle Scholar
  4. Andrei, N., F. Svaricek and H.-D. Wend. 1991. DACS - An Interactive Package for the Qualitative Analysis of Large-Scale Control Systems. Proc. of the 5th IFAC/IMACS Symposium on Computer Aided Design in Control Systems. Swansea. 421–426.Google Scholar
  5. Arbel, A. 1981. Controllability Measures and Actuator Placement in Oscillatory Systems. Int. J. Control 33. 565–574.MathSciNetzbMATHCrossRefGoogle Scholar
  6. Bachmann, W. 1981. Strenge strukturelle Steuerbarkeit and Beobachtbarkeit von Mehrgrößensystemen. Regelungstechnik 29. 318–323.zbMATHGoogle Scholar
  7. Bachmann, W. 1982. Zum Stabilitätsverhalten dezentraler Regelungssysteme. Dissertation Universität -GH- Duisburg and VDI Fortschrittberichte. Reihe 8. Nr. 49. Düsseldorf: VDI-Verlag.Google Scholar
  8. Bakri, N., N. Becker and E. Ostertag. 1988. Anwendung von KontrollStörgrößenbeobachtern zur Regelung and zur Kompensation trockener Reibung. Au tom a tisierungs technik 36. 50–54.Google Scholar
  9. Bals, J. 1989. Aktive Schwingungsdämpfung flexibler Strukturen. Dissertation. Universität Karlsruhe.Google Scholar
  10. Beater, P. 1987. Zur Regelung nichtlinearer Systeme mit Hilfe bilinearer Modelle. Dissertation Universität -GH- Duisburg and VDI Fortschritt-berichte. Reihe 8. Nr. 245. Düsseldorf: VDI-Verlag.Google Scholar
  11. Basile, G. and G. Marro. 1969. Controlled and Conditioned Invariant Subspaces in Linear Systems. J. Optimization Theory and Application 3. 306–315.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Beelen, Th. and P. Van Dooren. 1988. An Improved Algorithm for the Computation of Kronecker’s Canonical Form of a Singular Pencil. Linear Algebra Appl. 105. 9–65.zbMATHCrossRefGoogle Scholar
  13. Belevitch, V. 1968. Classical Network Theory. San Francisco: Holden-Day.zbMATHGoogle Scholar
  14. Benninger, N.F. 1987. Analyse and Synthese linearer Systeme mit Hilfe neuer Strukturmaße. Dissertation Karlsruhe and VDI Fortschrittberichte. Reihe B. Nr. 138. Düsseldorf: VDI-Verlag.Google Scholar
  15. Benninger, N.F. and J. Rivoir. 1986. Ein neues konsistentes Maß zur Beurteilung der Steuerbarkeit in linearen, zeitinvarianten Systemen. Automatisierungstechnik 34. 473–479.zbMATHGoogle Scholar
  16. Berger, W.A., R.J. Perry and H.H. Sun. 1991. An Algorithm for the Assignment of System Zeros. Automatica 27. 541–544.CrossRefGoogle Scholar
  17. Bhattacharyya, S.P. 1980. Frequency Domain Conditions for Disturbance Rejection. IEEE Trans. Automat. Control 25. 1211–1213.zbMATHGoogle Scholar
  18. Bingulac, S. and H.F. VanLandingham. 1993. Algorithms for Computer-Aided Design of Multivariable Control Systems. New York: Marcel Dekker.zbMATHGoogle Scholar
  19. Boley, D.L. 1987. Computing Rank-Deficiency of Rectangular Matrix Pencils. Systems & Control Letters 9. 207–214.MathSciNetzbMATHCrossRefGoogle Scholar
  20. Boley, D.L. and W.-S. Lu. 1986. Measuring How Far a Controllable System is from an Uncontrollable One. IEEE Trans. Automat. Control 31. 249–251.CrossRefGoogle Scholar
  21. Brockett, R.W. 1965. Poles, Zeros and Feedback: State Space Interpretation. IEEE Trans. Automat. Control 10. 129–135.CrossRefGoogle Scholar
  22. Burkard, R.E. and U. Derigs. 1980. Assignment and Matching Problems: Solution Methods with FORTRAN-Programs. Berlin: Springer.zbMATHGoogle Scholar
  23. Carpaneto, G. and P. Toth. 1983. Algorithm 50: Algorithm for the Solution of the Assignment Problem for Sparse Matrices. Computing 31. 83–94.zbMATHCrossRefGoogle Scholar
  24. Commault, C. and J.M. Dion. 1982. Structure at Infinity of Linear Multi-variable Systems: A Geometric Approach. IEEE Trans. Automat. Control 27. 693–696.MathSciNetzbMATHCrossRefGoogle Scholar
  25. Commault, C., J.M. Dion and S. Perez. 1984. Transfer Matrix Approach to the Disturbance Decoupling Problem. Proc. of the 9th IFAC World Congress. Budapest. 130–133.Google Scholar
  26. Commault, C., J.M. Dion and A. Perez. 1990. Disturbance Rejection for Structured Systems. Proc. of the 29th IEEE Conference on Decision and Control. Hawaii. 1875–1879.CrossRefGoogle Scholar
  27. Commault, C., J.M. Dion and A. Perez. 1991. Minimal Structure in the Block Decoupling Problem with Stability. Automatica 27. 331–338.zbMATHCrossRefGoogle Scholar
  28. Cremer, M. 1971. A Precompensator of Minimal Order for Decoupling a Linear Multi-Variable System. Int. J. Control 14. 1089–1103.MathSciNetzbMATHCrossRefGoogle Scholar
  29. Dantzig, G.B. 1966. Lineare Programmierung and Erweiterungen. Berlin: Springer.CrossRefGoogle Scholar
  30. Davison, E.J. 1977. Connectability and Structural Controllability of Composite Systems. Automatica 13. 109–123.MathSciNetzbMATHCrossRefGoogle Scholar
  31. Davison, E.J. 1990. Benchmark Problems for Control System Design. Oxford: Express Litho Service.Google Scholar
  32. Davison, E.J. and S.H. Wang. 1974. Properties and Calculation of Transmission Zeros of Linear Multivariable Systems. Automatica 10. 643–658.zbMATHCrossRefGoogle Scholar
  33. Davison, E.J. and S.H. Wang. 1978. An Algorithm for the Calculation of Transmission Zeros of the System (C,A,B,D) using High Gain Output Feedback. IEEE Trans. Automat. Control 23. 738–741.zbMATHCrossRefGoogle Scholar
  34. DeCarlo, R.A. 1989. Linear Systems A State Variable Approach with Numerical Implementations. Englewood Cliffs: Prentice Hall.Google Scholar
  35. Demmel, J. and B. Kâgström. 1993a. The Generalized Schur Decomposition of an Arbitrary Pencil A - AB: Robust Software with Error Bounds and Applications. Part I: Theory and Algorithms. ACM Trans. Math. Software 19. 160–174.zbMATHCrossRefGoogle Scholar
  36. Demmel, J. and B. Kâgström. 1993b. The Generalized Schur Decomposition of an Arbitrary Pencil A - AB: Robust Software with Error Bounds and Applications. Part II: Software and Applications. ACM Trans. Math. Software 19. 175–201.Google Scholar
  37. Descusse, J. and J.M. Dion. 1982. On the Structure at Infinity of Linear Square Decoupled Systems. IEEE Trans. Automat. Control 27. 971–974.MathSciNetzbMATHCrossRefGoogle Scholar
  38. Descusse, J. and C.H. Moog. 1987. Dynamic Decoupling for Right-invertible Nonlinear Systems. Systems & Control Letters. 8. 345–349.Google Scholar
  39. Descusse, J., J.F. Lafay and V. Kuéera. 1984a. Decoupling by Restricted Static-State Feedback: The General Case. IEEE Trans. Automat. Control 28. 79–81.CrossRefGoogle Scholar
  40. Descusse, J., J.F. Lafay and M. Malabre. 1983. On the Structure at Infinity of Linear Block-Decouplable Systems: The General Case. IEEE Trans. Automat. Control 28. 1115–1118.MathSciNetzbMATHCrossRefGoogle Scholar
  41. Descusse, J., J.F. Lafay and M. Malabre. 1984b. Further Results on Morgan’s Problem. Systems &Control Letters 4. 203–208.MathSciNetzbMATHCrossRefGoogle Scholar
  42. Descusse, J., J.F. Lafay and M. Malabre. 1988. Solution to Morgan’s Problem. IEEE Trans. Automat. Control 33. 732–739.MathSciNetzbMATHCrossRefGoogle Scholar
  43. Desoer, C.A. and J.D. Schulman. 1974. Zeros and Poles of Matrix Transfer Functions and Their Dynamical Interpretion. IEEE Trans. on Circuits and Systems 21. 3–8.MathSciNetCrossRefGoogle Scholar
  44. Di Benedetto, M.D., J.W. Grizzle and C.H. Moog. 1989. Rank Invariants of Nonlinear Systems. SIAM J. Control and Optimization. 27. 658–672.MathSciNetzbMATHCrossRefGoogle Scholar
  45. Dion, J.M 1983. Feedback Block Decoupling and Infinite Structure of Linear Systems. Int. J. Control 37. 521–533.MathSciNetzbMATHCrossRefGoogle Scholar
  46. Dongarra, J.J., C.B. Moler, J.R. Bunch u.a. 1979. LINPACK Users’ Guide. Philadelphia: SIAM.CrossRefGoogle Scholar
  47. Dorißen, H.T. 1990. Zur Minimalrealisierung and Identifikation bilinearer Systeme durch Markovparameter. Dissertation Universität -GH- Duisburg and VDI Fortschrittberichte. Reihe B. Nr. 221. Düsseldorf: VDI-Verlag.Google Scholar
  48. Duff, I.S. 1981a. On Algorithms for Obtaining a Maximum Transversal. ACM Trans. Math. Software 7. 315–330.CrossRefGoogle Scholar
  49. Duff, I.S. 1981b. Algorithm 575: Permutations for a Zero-Free Diagonal. ACM Trans. Math. Software 7. 387–390.CrossRefGoogle Scholar
  50. Duff, I.S and J.K. Reid. 1978. Algorithm 529: Permutation to Block Triangular Form. ACM Trans. Math. Software 4. 189–192.CrossRefGoogle Scholar
  51. Duff, I.S., A.M. Erisman and J.K. Reid. 1990. Direct Methods for Sparse Matrices. Oxford: University Press.Google Scholar
  52. Egervâry, E. 1953. On Combinatorial Properties of Matrices, translated by H.W. Kuhn. Naval Res. Logist., Projekt Report, Dept. Math., Princeton University.Google Scholar
  53. Eising, R. 1983. The Distance Between a System and the Set of Uncontrollable Systems. Proc. of the Int. Symposium MTNS-83. Beer-Sheva. 303–314.Google Scholar
  54. Eising, R. 1984. Between Controllable and Uncontrollable. Systems & Control Letters 4. 263–264.MathSciNetzbMATHCrossRefGoogle Scholar
  55. Elliot, H. and W.A. Wolovich. 1982. A Parameter Adaptive Control Structure for Linear Multivariable Systems. IEEE Trans. Automat. Control 27. 340–352.CrossRefGoogle Scholar
  56. Emami-Naeini, A. and P. Van Dooren. 1982. Computation of Zeros of Linear Multivariable Systems. Automatica 26. 415–430.CrossRefGoogle Scholar
  57. Engell, S. 1988. Optimale lineare Regelung. Berlin: Springer.Google Scholar
  58. Engell, S. and D. Konik. 1986a. Sequential Design of Decentralized Controllers Using Decoupling Techniques. Proc. of the IFAC Symposium Large Scale Systems. Zürich. 264–275.Google Scholar
  59. Engell, S. and D. Konik. 1986b. Zustandsermittlung bei unbekanntem Eingangssignal. Automatisierungstechnik 34. 38–42 and 247–251.Google Scholar
  60. Falb, P.L. and W.A. Wolovich. 1967. Decoupling in the Design and Synthesis of Multivariable Control Systems. IEEE Trans. Automat. Control 12. 651–659.CrossRefGoogle Scholar
  61. Fallside, F. 1977. Control System Design by Pole-Zero Assignment. New York: Academic Press.zbMATHGoogle Scholar
  62. Ferreira, P.G. and S.P. Bhattacharayya. 1977. On Blocking Zeros. IEEE Trans. Automat. Control 22. 258–259.zbMATHCrossRefGoogle Scholar
  63. Fliess, M. 1986. A New Approach to the Structure at Infinity of Nonlinear Systems. Systems & Control Letters 7. 419–421.MathSciNetzbMATHCrossRefGoogle Scholar
  64. Föllinger, O. 1990. Regelungstechnik. Heidelberg: Hüthig.Google Scholar
  65. Francis, B.A. and W.M. Wonham. 1975. The Role of Transmission Zeros in Linear Multivariable Regulators. Int. J. Control 22. 657–681.MathSciNetzbMATHCrossRefGoogle Scholar
  66. Franklin, G.F. and C.R. Johnson. 1981. A Condition for Full Zero Assignment in Linear Control Systems. IEEE Trans. Automat. Control 26. 519–521.MathSciNetzbMATHCrossRefGoogle Scholar
  67. Franksen, O.I., P. Falster and F.J. Evans. 1979. Qualitative Aspects of Large Scale Systems. Berlin: Springer.CrossRefGoogle Scholar
  68. Gantmacher, F.R. 1986. Matrizen theorie. Berlin: Springer.CrossRefGoogle Scholar
  69. Garbow, B.S., J.M. Boyle u.a. 1977. Matrix Eigensystem Routines - EISPACK Guide Extension. Berlin: Springer.CrossRefGoogle Scholar
  70. Gaus, N. and R. Steinhauser. 1989. Reglerentwurf zur aktiven Vibrationsunterdrückung bei einem Hubschrauber. Forschungsbericht 89–20. Deutsche Forschungs- und Versuchsanstalt für Luft-und Raumfahrt. Oberpfaffenhofen.Google Scholar
  71. Gehre, H.-G. 1989. Regelungstechnische Modellapproximation in Zeit-und Frequenzbereich. Dissertation. Ruhr-Universität Bochum.Google Scholar
  72. Gilbert, E.G. 1969. The Decoupling of Multivariable Systems by State Feedback. SIAM J. Control 7. 50–63.MathSciNetzbMATHCrossRefGoogle Scholar
  73. Glover, K. and L.M. Silverman. 1976. Characterization of Structural Controllability. IEEE Trans. Automat. Control 21. 534–537.MathSciNetzbMATHCrossRefGoogle Scholar
  74. Golub, G.H. and C.F. Van Loan. 1989. Matrix Computations. Baltimore and London: Johns Hopkins University Press.zbMATHGoogle Scholar
  75. Grosche, G. and V. Ziegler. 1979. Ergänzende Kapitel zu „Bronstein, I.N. and K.A. Semendjajew. Taschenbuch der Mathematik“. Leipzig: Teubner.Google Scholar
  76. Grübel, G. 1983. Die regelungstechnische Programmbibliothek RASP. Regelungstechnik 31. 75–81.zbMATHGoogle Scholar
  77. Guo, L. 1991. Zur Regelung bilinearer Systeme am Beispiel hydraulischer Antriebe. Dissertation Universität -GH- Duisburg and VDI Fortschritt-berichte. Reihe B. Nr. 245. Düsseldorf: VDI-Verlag.Google Scholar
  78. Harvey, C.A. and G. Stein. 1978. Quadratic Weights for Asymptotic Regulator Properties. IEEE Trans. Automat. Control 23. 378–387.MathSciNetzbMATHCrossRefGoogle Scholar
  79. Hasse, H. 1969. Zahlentheorie. Berlin: Akademie-Verlag.zbMATHGoogle Scholar
  80. Hautus, M.L.J. 1969. Controllability and Observability Conditions of Linear Autonomous Systems. Indagationes Mathematicae 31. 443–448.MathSciNetGoogle Scholar
  81. Hautus, M.L.J. 1970. Stabilization, Controllability and Observability of Li- near Autonomous Systems. Indagationes Mathematicae 32. 448–455.MathSciNetCrossRefGoogle Scholar
  82. Hautus, M.L.J. 1976. The Formal Laplace Transform for Smooth Linear Systems. 29–47. In: Mathematical Systems Theory, ed. G. Marchesini and S.K. Mitter. New York: Springer.Google Scholar
  83. Hautus, M.L.J. 1980. (A,B)-Invariant and Stabilizability Subspaces, a Frequency Domain Description. Automatica 16. 703–707.MathSciNetzbMATHCrossRefGoogle Scholar
  84. Hautus, M.L.J. 1983. Strong Detectability and Observers. Linear Algebra and Its Applications 50. 353–368.MathSciNetzbMATHCrossRefGoogle Scholar
  85. Hautus, M.L.J. and M. Heyman. 1978. Linear Feedback - An Algebraic Approach. SIAM J. Control and Optimization 16. 83–105.zbMATHGoogle Scholar
  86. Hein, O. 1977. Graphentheorie für Anwender. Mannheim: B.I. Wissenschaftsverlag.Google Scholar
  87. Heister, M. 1982. Eine Methodik zur rechnergestü tzten Analyse and Synthese von Mehrgrößenregelsystemen. Dissertation. Universität -GH- Wuppertal.Google Scholar
  88. Hinrichsen, D. and A. Linnemann. 1984. Normalformen vom Hermite-Typ and die Berechnung dominanter Hermite-Indizes strukturierter Systeme. Regelungstechnik 32. 124–130.zbMATHGoogle Scholar
  89. Hinrichsen, D. and H.-W. Philippsen. 1990. Modellreduktion mit Hilfe balancierter Realisierungen. Automatisierungstechnik 38. 416–422 and 460–466.Google Scholar
  90. Hippe, P. 1982. Ein modales Regelbarkeitsmaß für lineare, zeitinvariante dynamische Systeme. Regelungstechnik 30. 96–101.zbMATHGoogle Scholar
  91. Hosoe, S. 1980. Determination of Generic Dimensions of Controllable Subspaces and Its Application. IEEE Trans. Automat. Control 25. 1192–1196.MathSciNetzbMATHCrossRefGoogle Scholar
  92. Hung, Y.S. and A.G.J. MacFarlane. 1981. On the Relationships between the Unbounded Asymptote Behaviour of Multivariable Systems, Root Loci, Impulse Response and Infinite Zeros. Int. J. Control 34. 31–69.MathSciNetzbMATHCrossRefGoogle Scholar
  93. Isidori, A. 1983. Nonlinear Feedback, Structure at Infinity and the Input-Output Linearization Problem. Proc. of the Int. Symposium MTNS-83. Beer-Sheva. 473–493.Google Scholar
  94. Isidori, A. and C.H. Moog. 1988. On the Nonlinear Equivalent of the Notion of Transmission Zeros. 146–158. In: Modeling and Adaptive Control, ed. C.I. Byrnes and A. Kurszanski. Berlin: Springer.CrossRefGoogle Scholar
  95. Jamshidi, M., M. Tarokh and B. Shafai. 1992. Computer-Aided Analysis and Design of Linear Control Systems. Englewood Cliffs: Prentice Hall.zbMATHGoogle Scholar
  96. Johnson, C.D. 1969. Optimization of a Certain Quality of Complete Controllability and Observability for Linear Dynamical Systems. Journal of Basic Engineering. Series D 91. 228–238.CrossRefGoogle Scholar
  97. Joos, D. 1983. Reduzierung numerischer Probleme bei linearen dynamischen Systemen durch Balancieren. Regelungstechnik 31. 269–272.zbMATHGoogle Scholar
  98. Juen, G. 1982. Anmerkungen zu den Strukturmaßen für die Steuer-, Stör- und Beobachtbarkeit linearer, zeitinvarianter Systeme. Regelungstechnik 30. 64–66.Google Scholar
  99. Kahlert, J. and H. Kiendl. 1987. DORA-1500/DORA-PC: Dortmunder regelungstechnische Anwenderprogramme. Au tom atisierungstechnik 35. 420–421.Google Scholar
  100. Kailath, T. 1980. Linear Systems. Englewood Cliffs: Prentice Hall.zbMATHGoogle Scholar
  101. Kalman, R.E. 1960. On the General Theory of Control Systems. Proc. of the ist IFAC Congress. Moskau. 1. 481–491.Google Scholar
  102. Kalman, R.E. 1963. Mathematical Description of Linear Dynamical Systems. SIAM J. Control 1. 152–192.MathSciNetzbMATHGoogle Scholar
  103. Kalman, R.E., Y.C. Ho and K.S. Narendra. 1961. Controllability of Linear Dynamical Systems. Contributions to Differential Equations 1. 189–213.MathSciNetGoogle Scholar
  104. Karcanias, N. and B. Kouvaritakis. 1979. The Output Zeroing Problem and its Relationship to the Invariant Zero Structure: A Matrix Pencil Approach. Int. J. Control 29. 395–415.CrossRefGoogle Scholar
  105. Kenney, C. and A.J. Laub. 1988. Controllability and Stability Radii for Companion Form Systems. Math. Control Signals Systems 1. 239–256.MathSciNetzbMATHCrossRefGoogle Scholar
  106. Klema, V.C. and A.J. Laub. 1980. The Singular Value Decomposition: Its Computation and Some Applications. IEEE Trans. Automat. Control 25. 164–176.MathSciNetzbMATHCrossRefGoogle Scholar
  107. Knobloch, H.W. and H. Kwakernaak. 1985. Lineare Kontrolltheorie. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  108. Köckemann, A. 1988. Zur adaptiven Regelung elektro-hydraulischer Antriebe. Dissertation Universität -Gil- Duisburg and VDI Fortschrittberichte Reihe B. Nr. 174. Düsseldorf: VDI-Verlag.Google Scholar
  109. König, D. 1936. Theorie der endlichen and unendlichen Graphen. Leipzig: Akademischer Verlag.Google Scholar
  110. Konik, D. 1986. Zur Analyse and Synthese zentral and dezentral geregelter linearer Mehrgröflensysteme. Dissertation Universität -Gil- Duisburg and VDI Fortschrittberichte. Reihe 8. Nr. 123. Düsseldorf: VDI-Verlag.Google Scholar
  111. Koussiouris, T.G. 1979. A Frequency Domain Approach to the Block De-coupling Problem: I. The Solvability of the Block Decoupling Problem by State Feedback and a Constant Non-Singular Input Transformation. Int. J. Control 29. 991–1010.MathSciNetzbMATHCrossRefGoogle Scholar
  112. Kouvaritakis, B. 1981. On the Asymptotic Behaviour of Optimal Root Loci. Int. J. Control 33. 1165–1170.MathSciNetzbMATHCrossRefGoogle Scholar
  113. Kouvaritakis, B. and J.M. Edmunds. 1979. Multivariable Root Loci: A Unified Approach to Finite and Infinite Zeros. Int. J. Control 29. 393–428.MathSciNetzbMATHCrossRefGoogle Scholar
  114. Kouvaritakis, B. and A.G.J. MacFarlane. 1976. Geometric Approach to Analysis and Synthesis of System Zeros. Int. J. Control 23. 149–181.MathSciNetzbMATHCrossRefGoogle Scholar
  115. Kouvaritakis, B. and U. Shaked. 1976. Asymptotic Behaviour of Root-Loci of Linear Multivariable Systems. Int. J. Control 23. 297–340.MathSciNetzbMATHCrossRefGoogle Scholar
  116. Kreindler, E. and P.E. Sarachik 1964. On the Concepts of Controllability and Observability of Linear Systems. IEEE Trans. Automat. Control 9. 129–146.MathSciNetCrossRefGoogle Scholar
  117. Kreindler, E. and P.E. Sarachik. 1965. Corrections to „On the Concepts of Controllability and Observability of Linear Systems“. IEEE Trans. Automat. Control 10. 118.MathSciNetCrossRefGoogle Scholar
  118. Kronecker, L. 1890. Algebraische Reduction der Schaaren bilinearer Formen. Sitz. -Ber. Akad. Wiss. Phys.-math, Klasse Berlin. 763–776 and 1225–1375.Google Scholar
  119. Kuhn, H.W. 1955. The Hungarian Method for Solving the Assignment Problem. Naval Res. Logist. 83–97.Google Scholar
  120. Kulisch, U.W. 1987. PASCAL-SC: A PASCAL Extension for Scientific Computation. Stuttgart: Teubner.Google Scholar
  121. Kulisch, U.W. and W.L. Miranker. 1983. A New Approach to Scientific Computation. New York: Academic Press.zbMATHGoogle Scholar
  122. Laub, A.J. 1985. Numerical Linear Algebra Aspects of Control Design Computations. IEEE Trans. Automat. Control 30. 97–108.MathSciNetzbMATHCrossRefGoogle Scholar
  123. Laub, A.J. and A. Linnemann. 1986. Hessenberg and Hessenberg/Triangular Forms in Linear System Theory. Int. J. Control 44. 1523–1547.MathSciNetzbMATHCrossRefGoogle Scholar
  124. Laub, A.J. and B.C. Moore. 1978. Calculation of Transmission Zeros Using QZ-Techniques. Automatica 14. 557–566.zbMATHCrossRefGoogle Scholar
  125. Lin, C.T. 1974. Structural Controllability. IEEE Trans. Automat. Control 19. 201–208.zbMATHCrossRefGoogle Scholar
  126. Linnemann, A. 1987. Numerical Aspects of Disturbance Decoupling by Mea- surement Feedback. IEEE Trans. Automat. Control 32. 922–926.zbMATHCrossRefGoogle Scholar
  127. Linnemann, A. 1993. Numerische Methoden für lineare Regelungssysteme. Mannheim: B.I. Wissenschaftsverlag.zbMATHGoogle Scholar
  128. Little, J.N. and C. Moler. 1986. PC-MATLAB User’s Guide. Sherbon: The MathWorks Inc.Google Scholar
  129. Litz, L. 1979. Reduktion der Ordnung linearer Zustandsraummodelle mittels modaler Verfahren. Stuttgart: Hochschul-Verlag.Google Scholar
  130. Litz, L. 1983a. Modale Maße für Steuerbarkeit, Beobachtbarkeit, Regelbarkeit and Dominanz — Zusammenhänge, Schwachstellen, neue Wege. Regelungstechnik 31. 148–158.zbMATHGoogle Scholar
  131. Litz, L. 1983b. Dezentrale Regelung. München: Oldenbourg.Google Scholar
  132. Lohmann, B. 1991. Vollständige and teilweise Führungsentkopplung im Zustandsraum. Dissertation Universität Karlsruhe and VDI Fortschrittberichte Reihe 8. Nr. 244. Düsseldorf: VDI-Verlag.Google Scholar
  133. Longman, R.W. and K.T. Alfriend 1981. Actuator Placement from Degree of Controllability Criteria for Regular Slewing of Flexible Spacecraft. Acta Astronautica 8. 703–718.zbMATHCrossRefGoogle Scholar
  134. Ludyk, G. 1977. Theorie dynamischer Systeme. Berlin: Elitera.zbMATHGoogle Scholar
  135. Ludyk, G. 1990. CAE von dynamischen Systemen Analyse, Simulation, Entwurf von Regelungssystemen. Berlin: Springer.CrossRefGoogle Scholar
  136. Lückel, J. and R. Kasper. 1981. Strukturkriterien für die Steuer-, Stör-und Beobachtbarkeit linearer, zeitinvarianter, dynamischer Systeme. Regelungstechnik 29. 357–362.zbMATHGoogle Scholar
  137. Lückel, J. and P.C. Müller. 1975. Analyse von Steuerbarkeits-, Beobachtbarkeits-und Störbarkeitsstrukturen linearer zeitinvarianter Systeme. Regelungstechnik 23. 163–171.zbMATHGoogle Scholar
  138. Lunze, J. and K. Reinschke. 1981. Analyse unvollständig bekannter Regelungssysteme. ZKI-Informationen 2/81. Berlin: Akademie der Wissenschaften.Google Scholar
  139. MacFarlane, A.G.J. 1975. Relationships Between Recent Developments in Linear Control Theory and Classical Design Techniques. Measurement and Control 8. 179–187, 219–223, 278–284, 319–323, 371–375.Google Scholar
  140. MacFarlane, A.G.J. and N. Karcanias. 1976. Poles and Zeros of Linear Multivariable Systems: A Survey of the Algebraic, Geometric and Complex-Variable Theory. Int. J. Control 24. 33–74.MathSciNetzbMATHCrossRefGoogle Scholar
  141. Malabre, M. and V. Kucera. 1984. Infinite Structure and Exact Model Matching Problem: A Geometric Approach. IEEE Trans. Automat. Control 29. 266–268.zbMATHCrossRefGoogle Scholar
  142. Marro, G. and A. Piazzi. 1992. Feedback Systems Stabilizability in Terms of Invariant Zeros. 323–338. In: Systems, Models and Feedback: Theory and Applications,Eds. A. Isidori and T.J. Tarn. Boston: Birkhäuser.Google Scholar
  143. McMillan, B. 1952. Introduction to Formal Realizability Theory. J. Bell System Technical 31. 217–279 and 541–600.Google Scholar
  144. Mayeda, H. and T. Yamada. 1979. Strong Structural Controllability. SIAM J. Control and Optimization 17. 123–138.MathSciNetzbMATHGoogle Scholar
  145. Mita, T. 1977. On Maximal Unobservable Subspace, Zeros and their Application. Int. J. Control 25. 885–899.MathSciNetzbMATHCrossRefGoogle Scholar
  146. Misra, P. and R.V. Patel. 1988. Transmission Zero Assignment in Linear Multivariable Systems. Part I: Square Systems. Proc. of the 27th IEEE Conf. on Decision and Control. Austin. 1310–1311.CrossRefGoogle Scholar
  147. Moler, C. 1980. MATLAB User’s Guide. Albuquerque: Department of Computer Science. University of New Mexico.Google Scholar
  148. Moog, C.H. 1988. Nonlinear Decoupling and Structure at Infinity. Math. Control Signals Systems. 1. 257–268.MathSciNetzbMATHCrossRefGoogle Scholar
  149. Moore, B.C. 1981. Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction. IEEE Trans. Automat. Control 26. 17–32.MathSciNetzbMATHCrossRefGoogle Scholar
  150. Morari, M. 1983. Flexibility and Resiliency of Process Systems. Computers and Chemical Eng. 7. 423–437.CrossRefGoogle Scholar
  151. Morgan, B.S. 1964. The Synthesis of Linear Multivariable Systems by State Feedback. Proc. of the Joint Automatic Control Conf. 468–472.Google Scholar
  152. Morse, A.S. 1973a. Structure and Design of Linear Model Following Systems. IEEE Trans. Automat. Control 18. 346–354.MathSciNetzbMATHCrossRefGoogle Scholar
  153. Morse, A.S. 1973b. Structural Invariants of Linear Multivariable Systems. SIAM J. Control 11. 446–465.MathSciNetzbMATHCrossRefGoogle Scholar
  154. Morse, A.S. 1976. System Invariants under Feedback and Cascade Control. 61–74. In: Mathematical Systems Theory, ed. G. Marchesini and S.K. Mitter. New York: Springer.CrossRefGoogle Scholar
  155. Müller, P.C. and H.I. Weber. 1972. Analysis and Optimization of Certain Qualities of Controllability and Observability for Linear Dynamical Systems. Automatica 8. 237–246.zbMATHCrossRefGoogle Scholar
  156. Murota, K. 1987. Systems Analysis by Graphs and Matroids: Structural Solvability and Controllability. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  157. Murota, K. and S. Poljak. 1990. Note on a Graph-Theoretic Criterion for Structural Output Controllability. IEEE Trans. Automat. Control 35. 939–942.MathSciNetzbMATHCrossRefGoogle Scholar
  158. Nebelung, U. 1988. Simulation and Reglerauslegung für einen Werkzeugmaschinenan trieb. Diplomarbeit (unveröffentlicht). MSRT. Universität-GHDuisburg.Google Scholar
  159. Nijmeijer, H. and J.M. Schumacher. 1985. Zeros at Infinity for Affine Nonlinear Control Systems. IEEE Trans. Automat. Control. 30. 566–573.MathSciNetzbMATHCrossRefGoogle Scholar
  160. Noltemeier, H. 1976. Graphentheorie mit Algorithmen and Anwendungen. Berlin: Walter De Gruyter.Google Scholar
  161. Nour Eldin, H.A. and M. Heister. 1980. Zwei neue Zustandsdarstellungsformen zur Gewinnung von Kroneckerindizes, Entkopplungsindizes and eines Prim-Matrix-Produktes. Regelungstechnik 28. 420–425.zbMATHGoogle Scholar
  162. Owens, D.H. 1978. Multivariable Root-Loci and the Inverse Transfer-Function Matrix. Int. J. Control 28. 345–351.MathSciNetzbMATHCrossRefGoogle Scholar
  163. Owens, D.H. 1980. A Note on the Orders of the Infinite Zeros of Linear Multivariable Systems. Int. J. Control 31. 409–412.MathSciNetzbMATHCrossRefGoogle Scholar
  164. Owens, D.H. 1984. On the Generic Structure of Multivariable Root-Loci. Int. J. Control 39. 311–319.MathSciNetzbMATHCrossRefGoogle Scholar
  165. Paige, C.C. 1981. Properties of Numerical Algorithms Related to Computing Controllability. IEEE Trans. Automat. Control 26. 130–138.MathSciNetzbMATHCrossRefGoogle Scholar
  166. Patel, R.V. 1975. On Zeros of Multivariable Systems. Int. J. Control 21. 599–608.zbMATHCrossRefGoogle Scholar
  167. Patel, R.V. 1981. Computation of Minimal-Order State-Space Realizations and Observability Indices Using Orthogonal Transformations. Int. J. Control 33. 227–247.zbMATHCrossRefGoogle Scholar
  168. Patel, R. and N. Munro. 1982. Multivariable System Theory and Design. Oxford: Pergamon Press.zbMATHGoogle Scholar
  169. Patel, R.V., V. Sinswat and F. Fallside. 1977. Disturbance Zeros in Multivariable Systems. Int. J. Control 26. 85–96.MathSciNetzbMATHCrossRefGoogle Scholar
  170. Patel, R.V., A.J. Laub and P. Van Dooren. 1994. Numerical Linear Algebra Techniques for Systems and Control. Piscataway: IEEE Press.zbMATHGoogle Scholar
  171. Penrose, R. 1955. A Generalized Inverse for Matrices. Proc. Cambridge Philos. Soc. 51. 406–413.MathSciNetzbMATHCrossRefGoogle Scholar
  172. Penrose, R. 1956. On Best Approximate Solution of Linear Matrix Equations. Proc. Cambridge Philos. Soc. 52. 17–19.MathSciNetzbMATHCrossRefGoogle Scholar
  173. Petkov, P.Hr., N.D. Christov and M.M. Konstantinov. 1992. Computational Methods for Linear Control Systems. Englewood Cliffs: Prentice Hall.Google Scholar
  174. Popov, V.M. 1973. HyperstabiIity of Control Systems (trans. of Romanian ed., 1966). Berlin: Springer.Google Scholar
  175. Porter, B. 1978. System Zeros and Invariant Zeros. Int. J. Control 28. 157–159.zbMATHCrossRefGoogle Scholar
  176. Porter, B. and A. Bradshaw. 1979. Design of Linear Multivariable Continuous-Time High-Gain Output-Feedback Regulators. Int. J. Systems Sci. 10. 113–121.MathSciNetzbMATHCrossRefGoogle Scholar
  177. Pralle, H. 1967. Zur Analyse linearer, zeitinvarianter Mehrfachsysteme. Dissertation. Universität Hannover.Google Scholar
  178. Pugh, A.C. 1977. Transmission and System Zeros. Int. J. Control 26. 315–324.MathSciNetzbMATHCrossRefGoogle Scholar
  179. Pugh, A.C. and P.A. Ratcliffe. 1979. On the Zeros and Poles of a Rational Matrix. Int. J. Control 30. 213–226.MathSciNetzbMATHCrossRefGoogle Scholar
  180. Pugh, A.C., E.R.L. Jones and O. Demianczuk. 1989. Infinite-Frequency Structure and a Certain Matrix Laurent Expansion. Int. J. Control 50. 1793–1805.MathSciNetzbMATHCrossRefGoogle Scholar
  181. Reinschke, K.J. 1988. Multivariable Control - A Graph-theoretic Approach. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  182. Reinschke, K.J., F. Svaricek and H.-D. Wend. 1992. On Strong Structural Controllability of Linear Systems. 31st IEEE Conf. on Decision and Control. Tucson.Google Scholar
  183. Roppenecker, G. and B. Lohmann. 1991. Beschreibung des Systemmodells Hinterachsprüfstand. Karlsruhe: Universität Karlsruhe.Google Scholar
  184. Rosenbrock, H.H. 1970. State Space and Multivariable Theory. London: Nelson.zbMATHGoogle Scholar
  185. Rosenbrock, H.H. 1973. The Zeros of a System. Int. J. Control 18. 297–299.zbMATHCrossRefGoogle Scholar
  186. Rosenbrock, H.H. 1974a. Correction to „The Zeros of a System“. Int. J. Control 20. 525–527.zbMATHCrossRefGoogle Scholar
  187. Rosenbrock, H.H. 1974b. Structural Properties of Linear Dynamical Systems. Int. J. Control 20. 191–202.MathSciNetzbMATHCrossRefGoogle Scholar
  188. Rosenbrock, H.H. 1977. Comments on „Poles and Zeros of Linear Multivariable Systems: A Survey of the Algebraic, Geometric and Complex-Variable Theory“. Int. J. Control 26. 157–161.MathSciNetzbMATHCrossRefGoogle Scholar
  189. Roth, H. 1984. Ein neues Verfahren zur Ordnungsreduktion and Reglerentwurf auf der Basis des reduzierten Modells. Dissertation Universität Karlsruhe and VDI Fortschrittberichte. Reihe B. Nr 69. Düsseldorf: VDI-Verlag.Google Scholar
  190. Schmid, H.J. 1974. Eine geometrische Deutung der Ungarischen Methode. Math. Zeitschrift 13. 213–218.CrossRefGoogle Scholar
  191. Schmidt, G. 1991 Grundlagen der Regelungstechnik. Berlin: Springer.Google Scholar
  192. Schmidt, J. 1986. Zur Vorgabe von Nullstellen einer Einzelübertragungsfunktion für spezielle Mehrgrößensysteme. Automatisierungstechnik 34. 239–246.zbMATHGoogle Scholar
  193. Schrader C.B. and M.K. Sain. 1989. Research on System Zeros: A Survey. Int. J. Control 50. 1407–1433.MathSciNetzbMATHCrossRefGoogle Scholar
  194. Schwarz, H. 1971. Mehrfachregelungen Bd. 2. Berlin: Springer.CrossRefGoogle Scholar
  195. Schwarz, H. 1976. Frequenzgang-und Wurzelortskurvenverfahren. Mannheim: B.I. Wissenschaftsverlag.zbMATHGoogle Scholar
  196. Schwarz, H. 1979. Zeitdiskrete Regelungssysteme. Braunschweig: Vieweg and Sohn.Google Scholar
  197. Schwarz, H. 1991. Nichtlineare Regelungssysteme: System theoretische Grundlagen. München: Oldenbourg.Google Scholar
  198. Seraji, H. 1982. On Fixed Modes in Decentralized Control Systems. Int. J. Control 35. 775–784.MathSciNetzbMATHCrossRefGoogle Scholar
  199. Shaked, U. 1976. Design Techniques for High Feedback Gain Stability. Int. J. Control 24. 137–144.zbMATHCrossRefGoogle Scholar
  200. Shaked, U. and N. Karcanias. 1976. The Use of Zeros and Zero-Directions in Model Reduction. Int. J. Control 23. 113–135.MathSciNetzbMATHCrossRefGoogle Scholar
  201. Shaked, U. and B. Kouvaritakis. 1977. The Zeros of Linear Optimal Control Systems and Their Role in High Feedback Gain Stability Design. IEEE Trans. Automat. Control 22. 597–599.MathSciNetzbMATHGoogle Scholar
  202. Shields, R.W. and J.B. Pearson. 1976. Structural Controllability of Mul- tiinput Linear Systems. IEEE Trans. Automat. Control 21. 203–212.MathSciNetzbMATHCrossRefGoogle Scholar
  203. Siljak, D.D. 1991. Decentralized Control of Complex Systems. Boston: Academic Press.Google Scholar
  204. Silverman, L.M. and H.J. Payne. 1971. The Decoupling Problem. SIAM J. Control 9. 199–233.MathSciNetzbMATHCrossRefGoogle Scholar
  205. Simon, J.D. and S.K. Mitter. 1969. Synthesis of Transfer Function Matrices with Invariant Zeros. IEEE Trans. Automat. Control 14. 420–421.MathSciNetCrossRefGoogle Scholar
  206. Sinha, P.K. 1984. Multi variable Control: An Introduction. New York: Marcel Dekker.Google Scholar
  207. Smith, B.T. u.a. 1976. Matrix Eigensystem Routines — EISPACK Guide. Berlin: Springer.Google Scholar
  208. Söte, W. 1979. Eine strukturorientierte Untersuchung zur Approximation von linearen zeitinvarianten Systemen. Dissertation. Universität Hannover.Google Scholar
  209. Söte, W. 1980. Eine graphische Methode zur Ermittlung der Nullstellen in Mehrgrößensystemen. Regelungstechnik 28. 346–348.zbMATHGoogle Scholar
  210. Söte, W. 1983. Structure and Zeros of Interconnected Systems. Proc. of the 3rd Workshop on Hierarchical Control. Warschau. 225–236.Google Scholar
  211. Stewart, G.W. 1977. On the Pertubation of Pseudo—Inverses, Projections and Linear Least Squares Problems. SIAM Review 19. 634–662.MathSciNetzbMATHCrossRefGoogle Scholar
  212. Stoer, J. 1989. Numerische Mathematik 1: Eine Einführung. Berlin: Springer.zbMATHGoogle Scholar
  213. Suda, N. and K. Umahashi. 1984. Decoupling of Nonsquare Systems —A Necessary and Sufficient Condition in Terms of Infinite Zeros—. Proc. of the 9th IFAC World Congress. Budapest. 88–93.Google Scholar
  214. Svaricek, F. 1984. Eine schnelle —numerisch stabile— Methode zur Überprüfung der Steuer— bzw. Beobachtbarkeit eines linearen zeitinvarianten Systems. Regelungstechnik 32. 134–135.Google Scholar
  215. Svaricek, F. 1985a. A Graph—theoretic Algorithm for Computing the Number of Invariant Zeros of Large Scale Systems. Proc. of the Int. Symp. of Systems Analysis and Simulation. Berlin. 276–279.Google Scholar
  216. Svaricek, F. 1985b. Computation of the Structural Invariants of Linear Multivariable Systems with an Extended Version of the Program ZEROS. Systems & Control Letters 6. 261–266.MathSciNetzbMATHCrossRefGoogle Scholar
  217. Svaricek, F. 1986. Graphentheoretische Ermittlung der Anzahl von strukturellen and streng strukturellen Invarianten Nullstellen. Automatisierungstechnik 34. 488–497.zbMATHGoogle Scholar
  218. Svaricek, F. 1987. Graphentheoretische Beschreibung and Bestimmung der endlichen and unendlichen Nullstellen von linearen Mehrgrößensystemen. Dissertation Universität —GH— Duisburg and VDI Fortschrittberichte. Reihe B. Nr. 135. Düsseldorf: VDI—Verlag.Google Scholar
  219. Svaricek, F. 1988. Verbesserte numerische Berechnung der strukturellen Invarianten eines linearen Systems mit Hilfe einer graphentheoretischen Analyse. A utomatisierungstechnik 36. 139–143.Google Scholar
  220. Svaricek, F. 1990. An Improved Graph—Theoretic Algorithm for Computing the Structure at Infinity of Linear Systems. Proc. of the 29th IEEE Conference on Decision and Control. Hawaii. 2923–2924.CrossRefGoogle Scholar
  221. Svaricek, F. 1991a. Computation of the Generic Structure at Infinity of Linear Systems: A Toeplitz—Matrix Approach. Proc. of the 13th IMACS World Congress on Computation and Applied Mathematics. Dublin. 1130–1132.Google Scholar
  222. Svaricek, F. 1991b. Ein numerisch stabiles Vefahren zur Überprüfung der Entkoppelbarkeit linearer Systeme. Automatisierungstechnik 39. 217–219.Google Scholar
  223. Svaricek, F. 1991c. Zur generischen Dimension des ausgangssteuerbaren Unterraumes. Forschungsnotiz 6/91. MSRT. Universität —GH— Duisburg.Google Scholar
  224. Svaricek, F. 1992a. Zur numerischen Berechnung der konsistenten Steuerbarkeitsmaße linearer, zeitinvarianter Systeme. Automatisierungstechnik 40. 39–40.Google Scholar
  225. Svaricek, F. 1992b. A Graph—Theoretic Approach for the Determination of the Structure at Infinity of Nonlinear Systems. Proc. of the IFAC Nonlinear Control Systems Design Symposium. Bordeaux. 124–129.Google Scholar
  226. Svaricek, F. 1993a. Algebraische Methoden zur Analyse and Synthese nichtlinearer Regelungssysteme. GMA—Aussprachetag „Nichtlineare Regelung“. Langen. VDI—Bericht 1026. 293–317.Google Scholar
  227. Svaricek, F. 1993b. A Graph—Theoretic Approach for the Investigation of the Observabiltiy of Bilinear Systems. Proc. of the 12th IFAC World Congress. Sydney. 351–354.Google Scholar
  228. Svaricek, F. 1994. A Decomposition Algorithm for Large Scale Systems. Proc. of the Joint IEEE/IFAC Symposium on Computer—Aided Control System Design. Tucson. 171–176.Google Scholar
  229. Svaricek, F. and H. Schwarz. 1993. Graph—Theoretic Determination of the Nonlinear Zeros at Infinity: Computational Results. Proc. of 2nd European Control Conference. Groningen. 2086–2089.Google Scholar
  230. Thorp, J.S. 1973. The Singular Pencil of Linear Dynamical System. Int. J. Control 18. 577–596.MathSciNetzbMATHCrossRefGoogle Scholar
  231. Tolle, H. 1983. Mehrgrößenregelkreissynthese: Bd. I. München: OldenbourgGoogle Scholar
  232. Tolle, H. 1985. Mehrgrößenregelkreissynthese: Bd. II. München: Oldenbourg.Google Scholar
  233. Törnig, W. 1979. Numerische Mathematik für Ingenieure and Physiker: Bd. 1. Berlin: Springer.CrossRefGoogle Scholar
  234. Tsai, T.-P. and T.-S. Wang. 1987. Optimal Design of Non-MinimumPhase Control Systems with Large Plant Uncertainty. Int. J. Control 45. 2147–2159.MathSciNetzbMATHCrossRefGoogle Scholar
  235. Ulm, M. 1987. Zur graphentheoretischen Ermittlung der dezentralen Stabilisierbarkeit dynamischer Systeme. Dissertation Universität -GH- Duisburg and VDI Fortschrittberichte Reihe 8. Nr. 144. Düsseldorf: VDI-Verlag.Google Scholar
  236. Unbehauen, H. 1985. Regelungstechnik II. Braunschweig: Vieweg and Sohn.Google Scholar
  237. van den Boom, A., F. Brown u.a. 1991. SLICOT, A Subroutine Library in Control and Systems Theory. Proc. of the 5th IFAC/IMACS Symposium on Computer Aided Design in Control Systems. Swansea. 89–94.Google Scholar
  238. van der Weiden, A.J.J. and O.H. Bosgra. 1979. The Determination of Structural Properties of a Linear Multivariable System by Operations of System Similarity: 1. Strictly Proper Systems. Int. J. Control 29. 835–860.zbMATHCrossRefGoogle Scholar
  239. van der Woude, J.W. 1989 On the Structure at Infinity of a Structured System. Tech. Report BS-R8918. Center for Mathematics and Computer Science. Amsterdam.Google Scholar
  240. Van Dooren, P. 1979. The Computation of Kronecker’s Canonical Form of a Singular Pencil. Linear Algebra Appl. 27. 103–140.zbMATHCrossRefGoogle Scholar
  241. Van Dooren, P. 1981. The Generalized Eigenstructure Problem in Linear System Theory. IEEE Trans. Automat. Control 26. 111–129.MathSciNetzbMATHCrossRefGoogle Scholar
  242. Van Dooren, P. and P. Dewilde. 1983. The Eigenstructure of an Arbitrary Polynomical Matrix: Computational Aspects. Linear Algebra Appl. 50. 545–579.MathSciNetzbMATHCrossRefGoogle Scholar
  243. Van Dooren, P., P. Dewilde and J. Vandewalle. 1979. On the Determination of the Smith-Macmillan Form of a Rational Matrix From Its Laurent Expansion. IEEE Trans. Circuits and Systems 26. 180–189.MathSciNetzbMATHCrossRefGoogle Scholar
  244. Vardulakis, A.I.G. 1980. On Infinite Zeros. Int. J. Control 32. 849–866.MathSciNetzbMATHCrossRefGoogle Scholar
  245. Vardulakis, A.I.G. 1991. Linear Multivariable Control. Chichester: John Wiley & Sons.Google Scholar
  246. Vardulakis, A.I.G. and N. Karcanias. 1983. Relations between Strict Equivalence Invariants and Structure at Infinity of Matrix Pencils. IEEE Trans. Automat. Control 28. 514–518.MathSciNetzbMATHCrossRefGoogle Scholar
  247. Vardulakis, A.I.G., D.N.J. Limebeer and N. Karcanias. 1982. Structure and Smith-Macmillan Form of a Rational Matrix at Infinity. Int. J. Control. 701–725.Google Scholar
  248. Verghese, G.C. 1978. Infinite-Frequency Behaviour in Generalized Dynamical Systems. Dissertation. Universität Stanford.Google Scholar
  249. Verghese, G.C. and T. Kailath. 1981. Rational Matrix Structure. IEEE Trans. Automat. Control 26. 434–439.MathSciNetzbMATHCrossRefGoogle Scholar
  250. Verghese, G., P. Van Dooren and T. Kailath. 1979. Properties of the System Matrix of a Generalized State-Space System. Int. J. Control 30. 235–243.zbMATHCrossRefGoogle Scholar
  251. Viswanathan, C.N. and R.W. Longman. 1981. The Determination of the Degree of Controllabilty for Dynamic Systems with Repeated Eigenvalues. Proc. of the NCKU/ASS Symposium on Engineering Sciences and Mechanics. Tainan. Taiwan. 1091–1111.Google Scholar
  252. Viswanathan, C.N., R.W. Longman and P.W. Likins 1984. A Degree of Controllability Definition: Fundamental Concepts and Applications to Modal Systems. J. of Guidance,Control and Dynamics 7. 222–230.zbMATHCrossRefGoogle Scholar
  253. Wang, S.H. and E.J. Davison. 1973. On the Stabilization of Decentralized Control Systems. IEEE Trans. Automat. Control 18. 473–478.MathSciNetzbMATHCrossRefGoogle Scholar
  254. Wassel, M. 1976. Eine stabilitätsorientierte Untersuchung zum Verhalten and Entwurf von hierarchisch organisierten Op timalsystemen. Dissertation. Universität Hannover.Google Scholar
  255. Wend, H.D. 1991. Strukutrelle Analyse linearer Regelungssysteme. Habilitationsschrift Universität -GH- Duisburg and München: Oldenbourg, 1993.Google Scholar
  256. Westreich, D. 1991. Computing Transfer Function Zeros of a State Space System. Int. J. Control 53. 477–493.MathSciNetzbMATHCrossRefGoogle Scholar
  257. Wey, T., F. Svaricek and H. Schwarz. 1994. A Graph-Theoretic Characterization for the Rank of Nonlinear Systems. Proc. of the IEE International Conference CONTROL ‘84. Coventry. 872–877.Google Scholar
  258. Wicks, M. and R.A. DeCarlo. 1991. Computing the Distance to an Uncontrollable System. IEEE Trans. Automat. Control 36. 39–49.MathSciNetzbMATHCrossRefGoogle Scholar
  259. Wilkinson, J.H. 1988. The Algebraic Eigenvalue Problem. Oxford: University Press.zbMATHGoogle Scholar
  260. Willems, J.C. and C. Commault. 1981. Disturbance Decoupling by Measurement Feedback with Stability or Pole Placement. SIAM J. Control and Optimization. 19. 490–504.MathSciNetzbMATHCrossRefGoogle Scholar
  261. Williams, J.L. 1975. Disturbance Isolation in Linear Feedback Systems. Int. J. System Sci. 6. 233–238.CrossRefGoogle Scholar
  262. Willems, J.L. 1986. Structural Controllability and Observability. Systems & Control Letters 8. 5–12.MathSciNetzbMATHCrossRefGoogle Scholar
  263. Williams, T. 1989. Computing the Transmission Zeros of Large Space Structures. IEEE Trans. Automat. Control 34. 92–94.zbMATHCrossRefGoogle Scholar
  264. Williams, T.W.C. and P.J. Antsaklis. 1986. A Unifying Approach to the Decoupling of Linear Multivariable Systems. Int. J. Control 44. 181–201.MathSciNetzbMATHCrossRefGoogle Scholar
  265. Wolovich, W.A. 1974. Linear Multivariable Systems. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  266. Wolovich, W.A. 1977. Multivariable System Zeros. in: Fallside (1977) S. 227–236.Google Scholar
  267. Wonham, W. 1974. Linear Multivariable Control: A Geometric Approach. Berlin: Springer.zbMATHGoogle Scholar
  268. Wonham, W.M. and A.S. Morse. 1970. Decoupling and Pole Assignment in Linear Multivariable Systems: A Geometric Approach. SIAM J. Control. 8. 1–18.MathSciNetzbMATHCrossRefGoogle Scholar
  269. Zurmühl, R. and S. Falk. 1984. Matrizen and ihre Anwendungen. Teil 1: Grundlagen. Berlin: Springer.Google Scholar
  270. Zurmühl, R. and S. Falk. 1986. Matrizen and ihre Anwendungen. Teil 2: Numerische Methoden. Berlin: Springer.Google Scholar

Copyright information

© B. G. Teubner Stuttgart 1995

Authors and Affiliations

  • Ferdinand Svaricek
    • 1
  1. 1.ITT Automotive Europe GmbHFrankfurt/MainDeutschland

Personalised recommendations