Skip to main content

Contribution of Tropospheric SO2 to the Stratospheric Aerosol Layer

  • Chapter
Atmospheric Trace Constituents
  • 26 Accesses

Abstract

Measurements of SO2 mixing ratio in the upper troposphere and lower stratosphere have been performed with a sensitve chemi-luminescence method which permits the detection of atmospheric SO2 traces below 10 pptv. Results of 9 aircraft ascents over Europe from 1978 – 1980 are reported. It is shown that the meteorological conditions at the tropopause level have an important influence on the observed SO2 mixing ratio. The weak vertical SO2 gradients in the upper troposphere suggest only a small flux of tropospheric SO2 into the stratosphere. Furthermore, increasing SO2 mixing ratios within the first kilometers of the stratosphere give strong support to a stratospheric SO2 source due to the oxidation of organic sulfur compounds (COS, CS2). SO2 measurements are discussed in the light of improved 1 D models concerning the stratospheric sulfur budget. The results clearly show that tropospheric SO2 is of only minor importance for the non-volcanic formation of the stratospheric aerosol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • BAULCH, D.L., COX, R.A., HAMPSON JR., R.F., KERR, J.A., TROE, J., WATSON, R.T. (1980): Evaluated kinetic and photochemical data for atmospheric chemistry, J. Phys. Chem. Ref. Data, 9, (2)

    Google Scholar 

  • CRUTZEN, P.J. (1976): The possible importance of CSO for the sulfate layer of the stratosphere, Geophys. Res. Lett., 3, 73–76

    Article  Google Scholar 

  • CRUTZEN, P.J. (1981): On the vertical distribution of gaseous sulfur compounds, unpublished manuscript

    Google Scholar 

  • DANIELSEN, E.F. (1968): Stratospheric-tropospheric exchange based on radioactivity, ozone and potential vorticity, J. Atm. Sci., 25, 502–518

    Article  Google Scholar 

  • DANIELSEN, E.F., BLECK, R., SHEDLOVSKY, J., WARTBURG, A., HAAGENSON, P., and POLLOCK, W. (1970): Observed distribution of radioactivity, ozone and potential vorticity associated with tropopause folding, J. Geophys. Res., 75, 2353–2361

    Article  Google Scholar 

  • DANIELSEN, E.F. (1975) Transport by mean and turbulent motions, chapt. 6 in: The natural stratosphere of 1974, CIAP monograph 1, CIAP monograph series, U.S. Dept. of Transportation, DOT-TST-75–1

    Google Scholar 

  • GEORGII, H.-W. and MEIXNER, F.X. (1980): Measurement of the tropospheric and stratospheric SO2-distribution, J. Geophys. Res., 85, 7433–7438

    Article  Google Scholar 

  • HARKER, A.B. (1975): The formation of sulfate in the stratosphere through the gas phase oxidation of sulfur dioxide, J. Geophys. Res., 80, 3399–3401

    Article  Google Scholar 

  • HOFMANN, D.J., ROSEN, J.M., PEPIN, T.J. and PINNICK, R.G. (1976): Stratospheric aerosol measurement IV: Global time variations of the aerosol burden and source considerations, J. Atm. Sci., 33, 1782–1788

    Article  Google Scholar 

  • INN, E.C.Y. and VEDDER J.F. (1981): Measurement of stratospheric sulfur constituents, Geophys. Res. Lett., 8, 5–8

    Article  Google Scholar 

  • IYER, R.S. and ROWLAND, F.S. (1980): A significant upper limit for the rate of formation of OCS from the reaction of OH with CS2, Geophys. Res. Lett., 7, 797–800

    Article  Google Scholar 

  • KURYLO, M.J. (1978): Flash photolysis resonance fluorescence investigation of the reactions of OH radicals with OCS and CS2, Chem. Phys. Lett., 58, 238–242

    Article  Google Scholar 

  • JAESCHKE, W., GEMGII, H.-W. and SCHMITT, R. (1976): Preliminary results of stratospheric SO2 measurements, Geophys. Res. Lett., 3, 517–519

    Article  Google Scholar 

  • JUNGE, C.E., CHAGNON, C.W. and MANSON, J.E. (1961): Stratospheric aerosols, J. Met., 18, 81–108

    Article  Google Scholar 

  • JUNGE, C.E. (1974): Sulfur budget of the stratospheric aerosol layer, Proc. of the IAMAP Conf. on Structure, Composition and General Circulation of the Upper and Lower Atmospheres, Melbourne, Jan. 1974, Vol. 1, pp. 85–97

    Google Scholar 

  • LAZRUS, A.L. and GANDRUD, B.W. (1974): Stratospheric sulfate aerosol, J. Geophys. Res., 79, 3424–3431

    Article  Google Scholar 

  • MEIXNER, F.X. (1981): Die vertikale Verteilung des atmosphärischen Schwefeldioxids im Tropopausenbereich, PhD thesis, J.W. Goethe University, Frankfurt am Main, FRG

    Google Scholar 

  • MEIXNER, F.X., GEORGII, H.-W., OCKELMANN, G., JÄGER, H. and REITER, R. (1981): The arrival of the Mount St. Helens eruption cloud over Europe, Geophys. Res. Lett., 8, 163–166

    Article  Google Scholar 

  • MOORTGART, G.J. and JUNGE, C (1777): The role of SO2 oxidation for the background stratospheric sulfate layer in the light of new reaction data, Pageoph, 115, 769–774

    Google Scholar 

  • NASA (1981): Chemical kinetic and photochemical data for use in stratospheric modeling evaluation, No. 4, NASA panel for data evaluation, Jan. 15, 1981, NASA Jet Prop. Lab., Calif. Inst. Technology, Pasadena, Cal.

    Google Scholar 

  • RAVINSHANKRA, A.R., KREUZZER, N.M., SHAH, R.C., WINE, P.H. (1980): Rate of reaction of OH with COS, EOS, 61, 671

    Google Scholar 

  • PEYTON, T.O., STEELE, R.V. and MABEY, U.R. (1976): Carbon disulfide, carbonyl sulfide: Literature review and environmental assessment, Standford Research Institute Report 68–01–2940. 57 pp.

    Google Scholar 

  • REITER, E.R. (1975): Stratospheric-tropospheric exchange processes, Rev. Geophys. Space Phys., 13, 459–474

    Article  Google Scholar 

  • SHAPIRO, M.A., REITER, E.R., CADLE, R.D., and SEDLACEK, W.A. (1980): Veertical mass- and trace constituent transports in the vicinity of jet streams, Arch. Met. Geophys. Biokl., Ser. B., 28, 193–206

    Article  Google Scholar 

  • STAUFF, J. and JAESCHKE, W. (1975): A chemiluminescence technique for measuring atmospheric trace concentrations of SO2, Atm. Environ., 9, 1038–1039

    Article  Google Scholar 

  • TORRES, A.L., MAROULIS, P.J., GOLDBERG, A.B. and BANDY, A.R. (1980): Atmospheric OCS measurements on Project Gametag, J. Geophys. Res., 85, 7357–7360

    Article  Google Scholar 

  • TURCO, R.P., WHITTEN, R.C., TOON, O.B., INN, E.C.Y., and HAMILL, P. (1980): Stratospheric hydroxyl radical concentrations: New limitations suggested by observations of gaseous and particulate sulfur, J. Atm. Sci., in press

    Google Scholar 

  • WHITTEN, R.C., TOON, O.B. and TURCO, R.P. (1980): The stratospheric aerosol layer: Processes, models, observations, and simulations, Pageoph, 118, 87–127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fritz Herbert

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig

About this chapter

Cite this chapter

Meixner, F.X. (1982). Contribution of Tropospheric SO2 to the Stratospheric Aerosol Layer. In: Herbert, F. (eds) Atmospheric Trace Constituents. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-90097-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-90097-5_5

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-528-08523-0

  • Online ISBN: 978-3-322-90097-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics