Advertisement

Parametric Airfoils and Wings

  • Helmut Sobieczky
Chapter
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NONUFM, volume 65)

Summary

Explicit mathematical functions are used for 2D curve definition for airfoil design. Flowphe-nomena-oriented parameters control geometrical and aerodynamic properties. Airfoil shapes are blended with known analytical section formulae. Generic variable camber wing sections and multicomponent airfoils are generated. For 3D wing definition all parameters are made functions of a third spanwise coordinate. High lift systems are defined kinematically by modelled track gear geometries, translation and rotation in 3D space. Examples for parameter variation in numerical optimization, mechanical adaptation and for unsteady coupling of flow and configuration are presented.

Keywords

Mach Number Transonic Flow Wing Shape Wing Surface Trail Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Sobieczky, H.: Computational Methods for the Design of Adaptive Airfoils and Wings. Notes on Numerical Fluid Mechanics, Vol. 2, ed. E. H. Hirschel, Vieweg (1979) pp. 269–278.Google Scholar
  2. [2]
    Sobieczky, H.: DFVLR-F5 Test Wing Configuration for Computational and Experimenta Experimental Aerodynamics, Wing Surface Generator Code, Control Surface and Boundary Conditions. Notes on Num. Fluid Mechanics, Vol. 22, ed. W. Kordulla, Vieweg (1988), pp. 27–37.Google Scholar
  3. [3]
    Sobieczky, H., Hefer, G., Tusche, S.: DFVLR-F5 Test Wing Experiment for Computational Aerodynamics. AIAA 5. Appl. Aerodynamics Conf. Proc., AIAA 87–2485CP, (1987), Notes on Numerical Fluid Mechanics, Vol. 22, ed. W. Kordulla, Vieweg, (1988), pp.4 – 22.Google Scholar
  4. [4]
    Sobieczky, H.: Aircraft Surface Generation. Results of EC Brite/Euram Project ‘Euromesh’ 1990–92, Notes on Numerical Fluid Mechanics, Vol. 44, ed. N. Weatherill et al, Vieweg (1993), pp. 71–76.Google Scholar
  5. [5]
    Sobieczky, H.: Geometry Generator for CFD and Applied Aerodynamics, in: New Design Concepts for High Speed Air Transport. CISM Courses and Lectures No. 366, Springer (Wien, New York), (1997) pp 137–157.Google Scholar
  6. [6]
    Ladson, C., Brooks, C.: Development of a Computer Program to obtain Ordinates for NACA 4-Digit, 4-Digit Modified, 5-Digit, and 16-Series Airfoils. NASA TM X-3284 (1975).Google Scholar
  7. [7]
    Eberle, A.: Berichtigung der Whitcomb-Offenlegungsschrift und Profildefinitionsprogramm. MBB-UFE-AERO-MT-298 (1977).Google Scholar
  8. [8]
    Zores, R.: Transonic Airfoil Design with Expert Systems. AIAA 95–1818CP, Proc. 13th AIAA Applied Aerodynamics Conf., San Diego, CA, (1995).Google Scholar
  9. [9]
    Garabedian, P. R.: On the Design of Airfoils Having no Boundary Layer Separation. Advances in Mathematics 15, (1975) pp 164–168.zbMATHCrossRefGoogle Scholar
  10. [10]
    Henne, P. A.: Innovation with Computational Aerodynamics: The Divergent Trailing Edge Airfoil”, Applied Computational Aerodynamics, ed. P. A. Henne, AIAA Education Series, AIAA, Washington, D.C., (1990), pp. 221–262.Google Scholar
  11. [11]
    Thompson, B. E., Lotz, R. D.: Divergent-Trailing-Edge Airfoil Flow. J. Aircraft Vol. 33 (1996), pp. 950–955.CrossRefGoogle Scholar
  12. [12]
    Sobieczky, H.: Gasdynamic Knowledge Base for High Speed Flow Modelling. in: New Design Concepts for High Speed Air Transport. CISM Courses and Lectures No. 366, Springer (Wien, New York), (1997) pp 105–119.Google Scholar
  13. [13]
    Ashill, P. R., Fulker, J. L., Simmons, M. J., Gaudet, I. M.: A Review of Research at DRA on Active and Passive Control of Shock Waves. 20th ICAS Congress Conf. Proc. ICAS- 96–2.1.4, (1996) pp. 76–87.Google Scholar
  14. [14]
    Geissler, W., Sobieczky, H.: Unsteady Flow Control on Rotor Airfoils. AIAA 95–1890CP, Proc. 13th AIAA Applied Aerodynamics Conference, San Diego, CA, (1995).Google Scholar
  15. [15]
    Sobieczky, H., Geissler, W., Hannemann, M.: Numerical Tools for Unsteady Viscous Flow Control”. Proc. 15th Int. Conf. on Num. Meth. in Fluid Dynamics. Lecture Notes in Physics, ed. P. Kutler, J. Flores, J.-J. Chattot, Springer (Berlin, Heidelberg) (1997).Google Scholar
  16. [16]
    Van der Velden, A.: The Oblique Flying Wing Transport. in: New Design Concepts for High Speed Air Transport. CISM Courses and Lectures No. 366, Springer (Wien, New York), (1997) pp 291–316.Google Scholar
  17. [17]
    Seebass, R.: Oblique Flying Wing Studies. in: New Design Concepts for High Speed Air Transport. CISM Courses and Lectures No. 366, Springer (Wien, NewYork), (1997) pp 317–336.Google Scholar
  18. [18]
    Li, P., Seebass, R., Sobieczky, H.: Manual Optimization of an Oblique Flying Wing. AIAA 98–0598 (1998).Google Scholar
  19. [19]
    Sobieczky, H.: Configuration Test Cases for Aircraft Wing Root Design and Optimization. Proc. ISEP’98, Nagano, Japan, (1998).Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1999

Authors and Affiliations

  • Helmut Sobieczky
    • 1
  1. 1.DLR German Aerospace Research EstablishmentGöttingenGermany

Personalised recommendations