Skip to main content

Multiscale Methods for Boundary Integral Equations and Their Application to Boundary Value Problems in Scattering Theory and Geodesy

  • Chapter
Boundary Elements: Implementation and Analysis of Advanced Algorithms

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NONUFM,volume 50))

Summary

In the present paper we give an overview on multiscale algorithms for the solution of boundary integral equations which are based on the use of wavelets. These methods have been introduced first by Beylkin, Coifman, and Rokhlin [5]. They have been developed and thoroughly investigated in the work of Alpert [1], Dahmen, Proessdorf, Schneider [16–19], Harten, Yad-Shalom [25], v.Petersdorff, Schwab [33–35], and Rathsfeld [39–40]. We describe the wavelet algorithm and the theoretical results on its stability, convergence, and complexity. Moreover, we discuss the application of the method to the solution of a two-dimensional scattering problem of acoustic or electromagnetic waves and to the solution of a fixed geodetic boundary value problem for the gravity field of the earth. The computational tests confirm the high compression rates and the saving of computation time predicted by the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ALPERT, B.K.: “A class of basis in L 2 for the sparse representation of integral operators”, SIAM J. Math. Anal. 24, pp. 246–262, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  2. ALPERT, B.K.: “Rapidly-convergent quadratures for integral operators with singular kernels”, Technical Report LBL 30092, Lawrence Berkeley Laboratory, University of California, Berkeley, C.A., 1990.

    Google Scholar 

  3. AMOSOV, B.A.: “On the approximate solution of elliptic pseudodifferential equations over smooth and closed curves”, in Russian, Z. Anal. Anwendungen 9, pp. 545–563, 1990.

    Google Scholar 

  4. ARNOLD, D.N. and WENDLAND, W.L.: “The convergence of spline collocation for strongly elliptic equations on curves”, Numer. Math. 47, pp. 317–431, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  5. BEYLKIN, G., COIFMAN, R., and ROKHLIN, V.: “Fast wavelet transforms and numerical algorithms I”, Comm. Pure Appl. Math. 44, pp. 141–183, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  6. BRANDT, A. and LUBRECHT, A.A.: “Multilevel matrix multiplication and fast solution of integral equation”, J. Comput. Phys. 90, pp. 348–370, 1991.

    Article  MathSciNet  Google Scholar 

  7. CARNICER, J.M., DAHMEN, W., and PEÑA, J.M.: “Local decomposition of refinable spaces”, to appear in Applied and Computational Harmonic Analysis, IGPM Report 112, RWTH Aachen, 1994.

    Google Scholar 

  8. CHUI, C.K.: “An introduction to wavelets”, Academic Press, Boston, 1992.

    MATH  Google Scholar 

  9. COHEN, A., DAUBECHIES, I., and FEAUVEAU, J.C.: “Biorthogonal bases of compactly supported wavelets”, Comm. Pure and Appl. Math. 45, pp. 485–560, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  10. COLTON, D. and KRESS, R.: “Integral equation methods in scattering theory”, Springer-Verlag, Berlin, Heidelberg, New York, 1983.

    MATH  Google Scholar 

  11. DAHLKE, S., DAHMEN, W., HOCHMUTH, R., and SCHNEIDER, R.: “Stable multi-scale bases and local error estimation for elliptic problems”, IGPM Report 124, RWTH Aachen, 1996.

    Google Scholar 

  12. DAHMEN, W., KLEEMANN, B., PROESSDORF, S., and SCHNEIDER, R.: “A multi-scale method for the double layer potential equation on a polyhedron”, in Dikshit, H.P. and Micchelli, C.A.: “Advances of Computational Mathematics”, World Scientific Publ. Co., Inc., New Delhi, pp. 15–57, 1994.

    Google Scholar 

  13. DAHMEN, W., KLEEMANN, B., PROESSDORF, S., and SCHNEIDER, R.: “Multiscale methods for the solution of the Helmholtz and Laplace equations”, in WENDLAND, W.: “Boundary Element Methods”, Reports from the Final Conference of the Priority Research Programme 1989–1995 of the German Research Foundation, Oct. 2–4, 1995, Stuttgart, Springer-Verlag, 1996.

    Google Scholar 

  14. DAHMEN, W. and KUNOTH, A.: “Multilevel preconditioning”, Numer. Math. 63, pp. 315–344, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  15. DAHMEN, W., KUNOTH, A., and SCHNEIDER, R.: “Operator equations, multiscale concepts and complexity”, to appear in Proceedings of the AMS-Siam Summer School, Park City, 1995, Preprint No. 206, WIAS, Berlin, 1996.

    Google Scholar 

  16. DAHMEN, W., PROESSDORF, S., and SCHNEIDER, R.: “Multiscale methods for pseudo-differential equations”, in Schumaker, L. and Webb, G.: “Recent Advances in Wavelet Analysis”, Wavelet Analysis and its Application 3, pp. 191–235, 1994.

    Google Scholar 

  17. Dahmen, W., PROESSDORF, S., and SCHNEIDER, R.: “Wavelet approximation methods for pseudo-differential equations I: Stability and convergence”, Math. Zeitschr. 215. pp. 583–620, 1994.

    Article  MATH  Google Scholar 

  18. Dahmen, W., PROESSDORF, S., and SCHNEIDER, R.: “Wavelet approximation methods for pseudo-differential equations II: Matrix compression and fast solution”, Advances in Comp. Math. 1, pp. 259–335, 1993.

    Article  MATH  Google Scholar 

  19. Dahmen, W., PROESSDORF, S., and SCHNEIDER, R.: “Multiscale methods for pseudo-differential equations on smooth manifolds”, in Chui, C.K., Montefusco, L., and Puccio, L.: “Wavelets: Theory, Algorithms, and Applications”, Academic Press, pp. 1–40, 1994.

    Google Scholar 

  20. Daubechies, I.: “Ten lectures on wavelets”, CBMS Lecture Notes 61, Siam, Philadelphia, 1992.

    Google Scholar 

  21. Dorobantu, M.: “Potential integral equations of the 2D Laplace operator in wavelet basis”, Preprint TRITA-NA-9401, Royal Institute of Technology, University of Stockholm, 1994.

    Google Scholar 

  22. Engels, J. and Klees, R.: “Galerkin versus collocation — Comparison of two discretization methods for the boundary integral equations in IR 3“, Manuscripta Geodetica 17, pp. 245–256, 1992.

    Google Scholar 

  23. Greengard, L. and Rokhlin, V.: “A fast algorithm for particle simulation”, J. Comput. Phys. 73, pp. 325–348, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  24. Hackbusch, W. and Nowak, Z.P.: “On the fast matrix multiplication in the boundary element method by panel clustering”, Numer. Math. 54, pp. 463–491, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  25. Harten, A. and Yad-Shalom, I.: “Fast multiresolution algorithms for matrix-vector multiplication”, SIAM J. Numer. Anal. 31, pp. 1191–1218, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  26. Junkherr, J.: “Effiziente Lösung von Gleichungssystemen die aus der Diskretisierung von schwach singulären Integralgleichungen 1. Art herrühren”, Ph. D. Thesis, Christian-Albrechts-Universität Kiel, 1994.

    Google Scholar 

  27. Klees, R.: “Lösung des geodätischen Randwertproblems mit Hilfe der Randelementmethode”, German Geodetic Kommission (DGK), Series C., No.382, Munich, 1992.

    Google Scholar 

  28. Meyer, Y.: “Wavelets and Operators”, Cambridge University Press, Cambridge, 1992.

    MATH  Google Scholar 

  29. Mikhlin, S.G. and PROESSDORF, S.: “Singular integral operators”, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1986.

    Book  Google Scholar 

  30. Nedelec, J.C.: “Integral equations with non integrable kernels”, Integral Equations and Operator Theory 5, pp. 562–572, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  31. Oswald, P.: “Multilevel finite element approximation”, Teubner, Stuttgart, 1994.

    MATH  Google Scholar 

  32. Overhauser, A. W.: “Analytic definition of curves and surfaces by parabolic blending”, Techn. Report No. S168–40, Scientific Research Staff Publication, Ford Motor Company, Detroit, 1968.

    Google Scholar 

  33. Petersdorff, T.v. and Schwab, C.: “Boundary element methods with wavelets and mesh refinement”, to appear in Proc. of ICIAM 1995, Hamburg, Special issue of ZAMM, Research Report No. 95–10, SAM, Eidgenössische Technische Hochschule Zürich, 1995.

    Google Scholar 

  34. Petersdorff, T.v. and Schwab, C.: “Fully discrete multiscale Galerkin BEM”, to appear in Dahmen, W., Kurdila, A.J., and Oswald, P.: “Multiresolution Analysis and PDE”, Series: Wavelet Analysis and its Applications, Academic Press 1996, Research Report No. 95–08, SAM, Eidgenössische Technische Hochschule Zürich, 1995.

    Google Scholar 

  35. Petersdorff, T.v. and Schwab, C.: “Wavelet approximations for first kind boundary integral equations on polygons”, submitted to Numer. Math., Technical Note BN-1157, Institute for Physical Science and Technology, University of Maryland at College Park, 1994.

    Google Scholar 

  36. PROESSDORF, S. and Schmidt, G.: “A finite element collocation method for singular integral equations”, Math. Nachr. 100, pp. 33–60, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  37. PROESSDORF, S. and SCHNEIDER, R.: “A spline collocation method for multidimensional strongly elliptic pseudodifferential operators of order zero”, Integral Equations and Operator Theory 14, pp. 399–435, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  38. PROESSDORF, S. and SCHNEIDER, R.: “Spline approximation methods for multidimensional periodic pseudodifferential equations”, Integral Equations and Operator Theory 15, pp. 626–672, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  39. RATHSFELD, A.: “A wavelet algorithm for the solution of the double layer potential equation over polygonal boundaries”, Journal of Integral Equations and Applications 7, pp. 47–97, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  40. RATHSFELD, A.: “A wavelet algorithm for the boundary element solution of a geodetic boundary value problem”, Preprint No. 225, WIAS, Berlin, 1996.

    Google Scholar 

  41. ROKHLIN, V.: “End point corrected trapezoidal quadrature rules for singular functions”, Computers and Mathematics with Applications 20, pp. 52–61, 1990.

    Article  MathSciNet  Google Scholar 

  42. ROKHLIN, V.: “Rapid solution of integral equations of classical potential theory”, J. Comput. Phys. 60, pp. 187–207, 1983.

    Article  MathSciNet  Google Scholar 

  43. SAAD, Y. and SCHULTZ, M.H.: “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci. Stat. Comput. 7, No.3, pp. 856–869, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  44. Saranen, J. and Vainikko, G.: “Fast solvers of integral and pseudodifferential equations on closed curves”, to appear.

    Google Scholar 

  45. SAUTER, S. A.: “Über die effiziente Verwendung des Galerkinverfahrens zur Lösung Predholmscher Integralgleichungen”, Ph. D. Thesis, Christian-Albrechts-Universität, Kiel, 1992.

    Google Scholar 

  46. SAUTER, S. A.: “Der Aufwand der Panel-Clustering-Methode für Integralgleichungen”, Bericht Nr. 9115, Inst. f. Inform. u. Prakt. Math., Christian-Albrechts-Universität, Kiel, 1991.

    Google Scholar 

  47. SCHNEIDER, R.: “Multiskalen- und Waveletkompression: Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme”, Habilitationsschrift, Fachbereich Mathematik, Technische Hochschule Darmstadt, 1995.

    Google Scholar 

  48. STEPHAN, E.P. and TRAN, T.: “A multi-level additive Schwarz method for hypersin-gular integral equations”, Report AMR 94/24, University of New South Wales, Sydney, 1994.

    Google Scholar 

  49. SWELDENS, W.: “The lifting scheme: a custom-design construction of biorthogonal wavelets”, Technical Report, Industrial Mathematics Initiative, Department of Mathematics, University of South Carolina, 1994.

    Google Scholar 

  50. WALKER, H.F.: “Implementation of the GMRES method using Householder transformations”, SIAM J. Sci. Stat. Comput. 9, No. 1, pp. 152–163, 1988.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Kleemann, B.H., Rathsfeld, A., Schneider, R. (1996). Multiscale Methods for Boundary Integral Equations and Their Application to Boundary Value Problems in Scattering Theory and Geodesy. In: Hackbusch, W., Wittum, G. (eds) Boundary Elements: Implementation and Analysis of Advanced Algorithms. Notes on Numerical Fluid Mechanics (NNFM), vol 50. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-89941-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89941-5_1

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-89943-9

  • Online ISBN: 978-3-322-89941-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics