Skip to main content

Flow Simulation in a High-Loaded Radial Compressor

  • Chapter
Flow Simulation with High-Performance Computers II

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NONUFM,volume 48))

Summary

A two- and three-dimensional Euler and Navier-Stokes code has been developed and successfully used for the computation of the flow field in a high loaded centrifugal compressor. For the purpose of comparison, the algebraic turbulence model of Baldwin and Lomax, a modification of the Baldwin-Lomax model with an extension according to Goldberg and Chakravarthy [1] for the determination of separated flow regions and the two-equation κ — ε model according to Kunz and Lakshminarayana [2, 3] are applied to simulate the flow field of the diffuser with the two-dimensional Navier-Stokes code. The three-dimensional solver in addition to the extended and original Baldwin-Lomax model has been applied to obtain the three-dimensional flow field of the diffuser and the impeller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

D, ε:

functions of the κ — ε model

e:

specific internal energy

Erot :

relative total specific internal energy

\(\overrightarrow{E}\) :

flux vector in direction of the curvilinear coordinates

f2, fμ :

functions of the κ — ε model

F Kleb :

Klebanoff intermittency function

FWake :

wake function

G:

Gaussian distribution

J:

Jacobian

k:

turbulent kinetic energy \((=k^\star/(\rho/\rho)^\star_{tot,\infty})\)

l:

length scale of the Baldwin-Lomax model

n:

wall distance

p:

static pressure \((=p^\star/p^\star_{tot,\infty})\)

P:

production rate of k

Pr:

Prandtl number

qi :

Cartesian component of heat transfer

\(\vec{Q}\) :

vector of variables of state

r:

radius \((=r^\star/r^\star_{DE})\)

Re:

Reynolds number \((r^\star_{DE}\sqrt{(p\rho)^\star_{tot,\infty}/\mu^\star_{l,\infty}}\)

RT :

local Reynolds number

\(\overrightarrow{S}\) :

source term vector

t:

time \((t^\star\sqrt{(p/\rho)^\star_{tot,\infty}/r^\star_{DE}})\)

u:

relative velocity in x-direction, \(u=u_1(=u^\star/\sqrt{(p/\rho)^\star_{tot,\infty}})\)

us :

wall friction velocity, velocity scale

Ui :

contravariant velocities

v, w:

relative velocities in y and z direction, v=v 2, w=u 3 (see u)

\(\overrightarrow{w}\) :

velocity vector

x,y,z:

relative Cartesian coordinates, x=x 1, y=x 2, z=x 3 \((x_{i}^{\star}/r^\star_{DE})\)

δij :

Kronecker delta

ε:

dissipation rate of \(k(=\varepsilon^\star r^\star_{DE})/[(p/\rho)^\star_{tot,\infty}]^{1.5})\)

κ:

isentropic coefficient

μl :

dynamic viscosity \((=\mu_{l}^{\star}/\mu^\star_{l,\infty})\)

μt :

turbulent viscosity

ξi :

generalized curvilinear coordinates

ρ:

density \((=\rho^\star/\rho^\star_{tot,\infty})\)

τij :

Cartesian stress tensor component

τw :

wall shear stress

ψ:

function in Eqn. (1)

ω:

vorticity scale

Ω:

angular velocity of relative frame of reference \((=\Omega^\star r^\star_{DE}/\sqrt{(p/\rho)^\star_{tot,\infty}})\)

~:

density weighted value

−:

time averaged value

+:

modified value

★:

dimensionalized value

a,b,BL:

layer pointer in the algebraic turbulence models

c:

inviscid

DE:

diffuser exit

i:

layer pointer in the algebraic turbulence models

i, j, k:

axis pointer

K:

suction duct upstream the compressor

o:

layer pointer in the algebraic turbulence models

tot:

total value

w:

wall

v:

viscous

0:

impeller exit

∞:

diffuser inlet

References

  1. Goldberg, U. C.; Chakravarthy, S. R.: Separated Flow Prediction Using a Hybrid k-L/Backflow Model, AIAA Journal, Vol. 28, No. 6, June 1990.

    Google Scholar 

  2. Kunz, R.; Lakshminarayana, B.: Explicit Navier-Stokes Computation of Cascade Flows Using the κ — ε Turbulence Model, AIAA Journal, Vol. 30, No. 1, Jan. 1992.

    Google Scholar 

  3. Kunz, R.; Lakshminarayana, B.: Three-Dimensional Navier-Stokes Computation of Tur-bomachinery Flows Using an Explicit Numerical Procedure and a Coupled κ — ε Turbulence Model, ASME Paper 91-GT-146, 1991.

    Google Scholar 

  4. Michelassi, V.; Liou, M.-S.; Povinelli, L.A.: Implicit Solution of Three-Dimensional Internal Turbulent Flows, NASA TM-103099, 1990.

    Google Scholar 

  5. Compton, W. B.; Abdol-Hamid, K. S.; Abeyounis, W. K.: Comparison of Algebraic Turbulence Models for Afterbody Flows with Jet Exhaust, AIAA Journal, Vol. 30, No. 1, Nov. 1992.

    Google Scholar 

  6. Jansen, M.: Untersuchungen an beschaufelten Diffusoren eines hochbelasteten Radialverdichters, Dissertation, Univ. Hannover, 1982.

    Google Scholar 

  7. Evers, W.: Zur Berechnung der dreidimensionalen reibungsbehafteten Strömung in transsonischen Kanälen und Leitradgittern, Dissertation, Univ. Hannover, 1992.

    Google Scholar 

  8. Teipel, I.; Wiedermann, A.; Evers, W.: Simulation of Flow Fields in High-Loaded Centrifugal Compressors, published in: Notes on Numerical Fluid Mechanics, Vol. 38, pp. 364–378. Editor: Hirschel, E., Vieweg, Braunschweig, 1993.

    Google Scholar 

  9. Roehl, C.; Simon, H.: Flow Simulations in Aerodynamically Highly Loaded Turboma-chines Using Unstructured Adaptive Grids, in this publication.

    Google Scholar 

  10. Hirsch, C.: Numerical Computation of Internal and External Flows, Wiley, New York, 1988.

    MATH  Google Scholar 

  11. Radespiel, R.: A Cell-Vertex Multigrid Method for the Navier-Stokes Equations, NASA TM-101557, 1989.

    Google Scholar 

  12. Jorgenson, P.; Turkel, E.: Central Difference TVD and TVB Schemes for Time Dependent and Steady State Problems, AIAA Paper 92-0053, 1992.

    Google Scholar 

  13. Jameson, A., Baker, T. J.: Solution of the Euler Equations for Complex Configurations, AIAA Paper 83-1929, 1983.

    Google Scholar 

  14. Amone, A.; Liou, M. S.; Povinelli, L. A.: Multigrid Calculations of Three-Dimensional Viscous Cascade Flows, ICOMP-91-18, NASA TM 105257, 1991.

    Google Scholar 

  15. Jameson, A.: MAE Report 1651, 1984, published in: Lecture Notes in Mathematics, Vol. 1127, pp. 156–242. Editor: Brezzi, F., Springer, Berlin, 1985.

    Google Scholar 

  16. Leicher, S.: Numerical Solution of Internal and External Inviscid and Viscous 3-D Flow Fields, AGARD-CP-412, Vol. 1, 1986.

    Google Scholar 

  17. Baldwin, B. S., Lomax, H.: Thin Layer Approximation and Algebraic Model for Separated Turbulent Flow, AIAA Paper 78-257, Jan. 1978.

    Google Scholar 

  18. Cebeci, T.: Calculation of Compressible Turbulent Boundary Layers with Heat and Mass Transfer, AIAA Paper 70-741, 1970.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Evers, W., Heinrich, M., Teipel, I., Wiedermann, A.R. (1996). Flow Simulation in a High-Loaded Radial Compressor. In: Hirschel, E.H. (eds) Flow Simulation with High-Performance Computers II. Notes on Numerical Fluid Mechanics (NNFM), vol 48. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-89849-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89849-4_33

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-89851-7

  • Online ISBN: 978-3-322-89849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics