Skip to main content

Flow Simulations in Aerodynamically Highly Loaded Turbomachines Using Unstructured Adaptive Grids

  • Chapter
Flow Simulation with High-Performance Computers II

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NONUFM,volume 48))

Summary

A method for simulations of the compressible flow in aerodynamically highly loaded turbomachines on unstructured adaptive grids is presented. The discretization of the conservation laws in space is executed by the finite volume method. For high efficiency an implicit solution procedure is used. The flux vector of the inviscid flow is calculated by a modified difference splitting method described by Reichert and Simon [9]. The generation of the initial grid and the grid adaptation are executed with the advancing-front method according to Peraire et al. [14] creating a grid consisting of triangles. The grid adaptation is based on an error estimation. In the case of turbulent flows, quadrilateral grid elements are also used for the efficient resolution of boundary layers. Examples are presented for inviscid and viscous subsonic and transonic flows. A test case for supersonic flow is described in [11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van Albada, G.D., van Leer, B., Roberts, W.W.: A Comparative Study of Computational Methods in Cosmic Gas Dynamics. Astronomy and Astrophysic, 108 (1982).

    Google Scholar 

  2. Amedick, V., Simon, H.: Numerical Simulation of the Three-Dimensional Turbulent Flow in a Turbine Rotor with Conical Walls. 6th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-6), Honolulu, Hawaii (1996).

    Google Scholar 

  3. Baldwin, B.S., Lomax, H.: Thin Layer Approximations and Algebraic Model for Separated Turbulent Flow. AIAA Paper 78-257 (1978).

    Google Scholar 

  4. Barth, T.J., Jespersen, D.C.: The Design and Application of Upwind Schemes on

    Google Scholar 

  5. Blasius, H.: Grenzschichten in Fluessigkeiten mit kleiner Reibung. Z. Math. Phys. 56 (1908) 1–37

    Google Scholar 

  6. Lam, C.K.G., Bremhorst, K.: A Modified Form of the κ — ε-Model for Predicting Wall Turbulence. Journal of Fluids Engineering, 103 (1981).

    Google Scholar 

  7. Lenke, L. J., Reichert, A. W., Simon, H.: Comparison of Viscous Flow Field Calculations Applicable to Turbomachinery Design with Experimental Measurements. Seventh International Conference on Computational Methods and Experimental Measurements CMEM 95 (1995).

    Google Scholar 

  8. Lenke, L. J., Reichert, A. W., Simon, H.: Viscous Flow Field Calculations for the VKI-1 Turbine Cascade Using Different Turbulence Models. ASME Paper 95-GT-91 (1995).

    Google Scholar 

  9. Reichert, A.W., Simon, H.: Numerical Investigations to the Optimum Design of Radial Inflow Turbine Guide Vanes. ASME Paper 94-GT-61 (1994).

    Google Scholar 

  10. Reichert, A. W., Simon, H.: Design and Flow Field Calculations for Transonic and Supersonic Radial Inflow Turbine Guide Vanes. ASME Paper 95-GT-97 (1995).

    Google Scholar 

  11. Roehl, C., Simon, H.: Simulations of Transonic Flows in Turbomachines Using a Novel Adaptation Method with Unstructured Grids. 6th ISCFD Lake Tahoe, Nevada (1995).

    Google Scholar 

  12. Osher, S., Solomon, F.: Upwind Schemes for Hyperbolic Systems of Conservation Laws. Mathematics of Computations 38 (1982) 339–377.

    Article  MathSciNet  MATH  Google Scholar 

  13. Roe, P.L.: Approximate Riemann Solvers, Parameter Vectors and Difference Schemes. Journal of Computational Physics 43 (1981) 357–372.

    Article  MathSciNet  MATH  Google Scholar 

  14. Peraire, J., Vahadi, M., Morgan, K., Zienkiewicz, O.C.: Adaptive Remeshmg for Compressible Flow Computations. Journal of Computational Physics 72 (1987).

    Google Scholar 

  15. Spalding, D.B., Launder, B.E.: Turbulence Models and Their Application to the Prediction of Internal Flows. Heat and Fluid Flow 2 (1972).

    Google Scholar 

  16. Šťastny, M., Šafařík, P.: Experimental Analysis Data on the Transonic Flow Past a Plane Turbine Cascade. ASME Paper 90-GT-313 (1990).

    Google Scholar 

  17. van Dervorst, H.A.: Bi-CGSTAB, a Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM Journal Sci. Statist. Comput. 13 (1992) 631–644.

    Article  Google Scholar 

  18. Weatherill, N. P.: Grid Generation. Numerical Grid Generation, von Karman Institute for Fluid Dynamics, Lecture Series 1990–06, Rhode Saint Genèse, Belgium (1990).

    Google Scholar 

  19. Wilcox, D. C.: A Half Century Historical Review of the κ-ω Model. AIAA-91-0615, Reno, Nevada (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Roehl, C., Simon, H. (1996). Flow Simulations in Aerodynamically Highly Loaded Turbomachines Using Unstructured Adaptive Grids. In: Hirschel, E.H. (eds) Flow Simulation with High-Performance Computers II. Notes on Numerical Fluid Mechanics (NNFM), vol 48. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-89849-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89849-4_32

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-89851-7

  • Online ISBN: 978-3-322-89849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics