Skip to main content

Multiple Pressure Variable (MPV) Approach for Low Mach Number Flows Based on Asymptotic Analysis

  • Chapter
  • 1033 Accesses

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NONUFM,volume 48))

Summary

An asymptotic analysis of the compressible Euler equations in the limit of vanishing Mach numbers is used as a guideline for the development of a low Mach number extension of an explicit higher order shock capturing scheme. For moderate and large Mach numbers the underlying explicit compressible flow solver is active without modification. For low Mach numbers, the scheme employs an operator splitting technique motivated by the asymptotic analysis. Advection of mass and momentum as well as long wave acoustics are discretized explicitly, while in solving the sonic terms, the scheme uses an implicit pressure correction formulation to guarantee both divergence-free flow in the zero Mach number limit and appropriate representation of weakly nonlinear acoustic effects for small but finite Mach numbers. This asymptotics based approach is also used to show how to modify incompressible flow solvers to capture weakly compressible flows.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Patnaik G., Guirguis R.H., Boris J.P., Oran E.S., ”A Barely Implicit Correction for Flux Corrected Transport”, JCP, 71 (1987), pp. 1–20.

    MATH  Google Scholar 

  2. Chorin A.J., ”Numerical solution of the Navier-Stokes equations”, Math. Comp., 22 (1968), pp. 745–762.

    Article  MathSciNet  MATH  Google Scholar 

  3. Chorin A.J., ”On the convergence of Discrete Approximations to the Navier-Stokes Equations”, Math. Comput., 23 (1969), pp. 341–353.

    Article  MathSciNet  MATH  Google Scholar 

  4. Gustafsson B., Stoor H., ”Navier-Stokes Equations for almost Incompressible Flow”, SIAM J. Num. Anal., 28 (1991), pp. 1523–1547.

    Article  MathSciNet  MATH  Google Scholar 

  5. Yee H.C., Shinn J.L., ”Semi-Implicit and Fully Implicit Shock Capturing Methods for Hyperbolic Conservation Laws with Stiff Source Terms”, AIAA Jnl., 27 (1989), pp. 299.

    Article  MathSciNet  Google Scholar 

  6. Bell J.B., Colella P., Glaz H.M., ”A Second-Order Projection Method for the Incompressible Navier-Stokes Equations”, JCP, 85 (1989), pp. 257–283.

    MathSciNet  MATH  Google Scholar 

  7. Weimer M., Meinke M., Krause E., ”Numerical Simulation of Incompressible Flows with the Method of Artifical Compressibility”, In this publication.

    Google Scholar 

  8. Klein R., ”Semi-Implicit Extension of a Godunov-Type Scheme Based on Low Mach Number Asymptotics I: One-dimensional flow”, JCP, 121 (1995), pp. 213–237

    MATH  Google Scholar 

  9. Klein R., Munz C.D., ”The Multiple Pressure Variable (MPV) Approach for the Numerical Approximation of Weakly Compressible Fluid Flow”, Proc. of the Int. Conf. on Num. Meth. in Cont. Mech., Prague, June 1994.

    Google Scholar 

  10. Klein R., Lange K., Willems W., Munz C.D., ”Semi-Implicit High Resolution Schemes for Low Mach Number Flows”, Proc. of Fifth Int. Conf. on Hyperbolic Problems, Theory, Numerics, and Applications, Stony Brook, 1994.

    Google Scholar 

  11. Klein R., Munz C.D., ”The Extension of Incompressible Flow Solvers to the Weakly Compressible Regime”, submitted to Theoretical and Numerical Fluid Mechanics, Sept. 1995.

    Google Scholar 

  12. Majda A.J., Sethian J., ”The derivation and Numerical Solution of the Equations of Zero Mach Number Combustion”, Comb. Sci. Technol., 42 (1985), pp. 185–205.

    Article  Google Scholar 

  13. Klainerman S., Majda A.J., ”Compressible and Incompressible Fluids”, Comm. Pure Applied Math., 35 (1982), pp. 629.

    Article  MathSciNet  MATH  Google Scholar 

  14. Strang, G., ”On the Construction and Comparison of Difference Schemes”, SIAM, J. Num. Anal., 5 (1967), pp. 506–517.

    Article  MathSciNet  Google Scholar 

  15. Chorin A.J., Marsden J.E., ”A Mathematical Introduction to Fluid Mechanics”, Springer, New York, 1990.

    Book  MATH  Google Scholar 

  16. Mulder W., Osher S., ”Computing Interface Motion in Compressible Gas Dynamics”, JCP, 100 (1992), pp. 209–228.

    MathSciNet  MATH  Google Scholar 

  17. LINSOL, Solver for Large and Sparce Linear Systems, Rechenzentrum der Universität Karlsruhe, http://www.rz.uni-karlsruhe.de/Uni/RZ/Forschung/Numerik/linsol/index.htmp.

    Google Scholar 

  18. Temam R., ”Sur l’approximation de la solution des equations de Navier-Stokes par la methode des pas fractionaires”, Arch. Rat. Mech. Anal., 32 (1969), pp. 135–153.

    Article  MathSciNet  MATH  Google Scholar 

  19. Temam R., ”Navier-Stokes Equations”, North-Holland, Amsterdam, New York, Oxford, 1977.

    MATH  Google Scholar 

  20. Patankar S., ”Numerical Heat Transfer and Fluid Flow”, McGraw-Hill, Washington D.C., 1980.

    MATH  Google Scholar 

  21. Patankar S., Spalding D., ”A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flow”, Int. J. Heat Mass Transfer, 15 (1972), 1787–1806.

    Article  MATH  Google Scholar 

  22. Gresho P.M., Chan S.T., ”On the Theory of Semi-Implicit Projection Methods for Viscous Incompressible Flow and its Implementation via a Finite Element Method That Also Introduces a Nearly Consistent Mass Matrix. Part2: Implementation”, Int. J. for Num. Meth. in Fluids, 11 (1990), pp. 621–659.

    Article  MathSciNet  MATH  Google Scholar 

  23. LeVeque R.J., ”A Large Time Step Generalization of Godunov’s Method for Systems of Conservation Laws”, SIAM J. Num. Anal., 22 (1985), pp. 1051–1073.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Geratz, K.J., Klein, R., Munz, C.D., Roller, S. (1996). Multiple Pressure Variable (MPV) Approach for Low Mach Number Flows Based on Asymptotic Analysis. In: Hirschel, E.H. (eds) Flow Simulation with High-Performance Computers II. Notes on Numerical Fluid Mechanics (NNFM), vol 48. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-89849-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89849-4_25

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-89851-7

  • Online ISBN: 978-3-322-89849-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics