Skip to main content

Time-Dependent 3D Numerical Simulation of Oldroyd-B Fluid Using Finite Volume Method

  • Chapter
Computation of Three-Dimensional Complex Flows

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NONUFM,volume 49))

  • 271 Accesses

Abstract

A three-dimensional numerical simulation of an Oldroyd-B fluid through a 4:1 planar contraction was performed using a time-dependent finite volume method on a staggered grid. The forward Euler scheme was employed to march in time. The non-linear terms in the momentum equations were discretized using a quadratic upstream interpolation. The program was validated on the start-up Couette flow at Reynolds number 1 and different Deborah numbers from 0.5 to 900, and the 2D 4:1 planar contraction of a Newtonian fluid. The time-dependent nature of these flows is analysed taking the solution at various times, from the initial condition to the steady-state, as frames in a motion picture. Results for vortex formation and growth are presented, then the differences between the simulated 2D and 3D planar contractions are discussed. To our knowledge, this is the first time-dependent numerical simulation of a viscoelastic fluid through a three-dimensional 4:1 contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Y. Yoo and Y. Na, “A numerical study of the planar contraction flow of a viscoelastic fluid using the SIMPLER algorithm,” J. Non-Newtonian Fluid Mech. 39, 89 (1991).

    Article  MATH  Google Scholar 

  2. J. M. Marchai and M. J. Crochet, “Hermitian finite elements for calculating viscoelastic flow,” J. Non-Newtonian Fluid Mech. 20, 187 (1986).

    Article  Google Scholar 

  3. Ch. Bodart and M. J. Crochet, “Time-Dependent Numerical Simulation of Viscoelastic Flow and Stability”, Theor. and Comput. Fluid Dynamics 5, 57 (1993).

    Article  MATH  Google Scholar 

  4. D. V. Boger, “Viscoelastic flows through contractions”, Annu. Rev. Fluid Mech. 19, 157 (1987).

    Article  Google Scholar 

  5. C. W. Hirt, B. D. Nichols and N. C. Romero, “SOLA — Numerical solution algorithm for transient fluid flow,” Los Alamos Laboratory, Report LA-5852 (1975).

    Google Scholar 

  6. M. Resch and U. Küster, “On viscoelastic fluid flow simulation using finite volume method,” Computational Fluid Dynamics’ 94, Eds. S. Wagner, E. H. Hirschel, J. Périaux, R. Piva, 989–993 (1994).

    Google Scholar 

  7. S. Bschorer and P. O. Brunn, “Finite volume method for simulation of non-Newtonian fluid flow,” Computational Fluid Dynamics’ 94, Eds. S. Wagner, E. H. Hirschel, J. Périaux, R. Piva, 989–993 (1994).

    Google Scholar 

  8. V. S. Patankar, Numerical heat transfer and fluid flow, (Hemisphere Publishing Corporation, New York, 1980).

    MATH  Google Scholar 

  9. D. D. Joseph, Fluid Dynamics of Viscoelastic Liquids, (Springer-Verlag, New York, 1984).

    Google Scholar 

  10. B. P. Leonard, “A stable accurate convective modelling procedure based on quadratic upstream interpolation,” Comp. Meth. Appl. Mech. Eng., 19, 59–88 (1979).

    Article  MATH  Google Scholar 

  11. J. J. Van Schaftingen, “Méthodes d’éléments finis pour les écoulements viscoélastiques”, Thèse de Doctorat, Université Catholique de Louvain, Louvain-la-Neuve (1985).

    Google Scholar 

  12. R. Keunings and M. J. Crochet, “Numerical simulation of the flow of a viscoelastic fluid through an abrupt contraction,” J. Non-Newtonian Fluid Mech. 14, 279 (1984).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michel Deville Spyros Gavrilakis Inge L. Ryhming

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Mompean, G., Deville, M.O. (1996). Time-Dependent 3D Numerical Simulation of Oldroyd-B Fluid Using Finite Volume Method. In: Deville, M., Gavrilakis, S., Ryhming, I.L. (eds) Computation of Three-Dimensional Complex Flows. Notes on Numerical Fluid Mechanics (NNFM), vol 49. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-89838-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89838-8_23

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-89840-1

  • Online ISBN: 978-3-322-89838-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics