Skip to main content

Versuchstechnik, Modellgesetze

  • Chapter
Aerodynamik der Bauwerke
  • 333 Accesses

Zusammenfassung

Grundsätzlich unterscheidet man zwei Versuchsarten.

  1. 1.

    Experimente in natürlichem Wind, wobei es sich meist um Originalobjekte, also Versuche im Maßstab 1:1 handelt.

  2. 2.

    Experimente im Modellmaßstab in einem künstlichen Luft ström, in einem Windkanal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Langhaar, H. L.: Dimensional Analysis and Theory of Models, John Wiley & Son, 1951

    MATH  Google Scholar 

  2. Zierep, J.: Ähnlichkeitsgesetze und Modellregeln der Strömungslehre, C. Braun, 1972

    MATH  Google Scholar 

  3. Whitbread, R. E.: The use of scale models for the determination of wind effects on buildings and structures, VKI Lectures “Wind Effects on Building and Structures”; von Karman Inst, for Fluid Dynamics 1972

    Google Scholar 

  4. Peterka, J. A.: Fluctuating-pressure tests for cladding designe, Proc. ASCE Nat. Struct. Eng. Conv. April 14–18, 1975, S. 1–20

    Google Scholar 

  5. Hunt, C. R., Fernholz, H.: Wind-tunnel simulation of the atmospheric boundary layer, a report on Euromech 50, J. Fluid Mech. 70/3, S. 543–559 (1975)

    Article  Google Scholar 

  6. Cook, N. J.: On simulating the lower third of the urban adiabatic boundary layer in a wind tunnel, Atmos. Env. 7, S. 691–705 (1973)

    Article  Google Scholar 

  7. Cook, N. J.: A boundary layer wind tunnel for building aerodynamics, BRE Current Paper CP 49/75

    Google Scholar 

  8. Cermak, J. E.: Laboratory simulation of the atmospheric boundary layer, AIAA J. 9/9, S. 1746–1754(1971)

    Article  Google Scholar 

  9. Bain, D. C., Baker, P. J., Rowat, M. J.: Wind Tunnels. An Aid to Engineering Structure Design, BHRA, Cranfield 1971

    Google Scholar 

  10. Melbourne, W. H.: Wind tunnel blockage correction for multiple building models tests, Proc. Fourth Australasian Conference on Hydraulics and Fluid Mech., Monash Univ., Melbourne, Australia 1971

    Google Scholar 

  11. Pope, A., Harper, J. J.: Low-Speed Wind Tunnel Testing, John Wiley & Sons, 1966

    Google Scholar 

  12. Schulz, G.: Die Verdrängungskorrekturen in Unterschallwindkanälen und die Grenzen ihrer Anwendbarkeit, Z. Flugwiss. 20/7, S. 261–268) (1972)

    Google Scholar 

  13. Wuest, W.: Verdrängungskorrekturen für rechteckige Windkanäle bei exzentrischer Lage des Modells und verschiedenen Strahlbegrenzungen, Z. Flugwiss. 20/3, S. 117–118 (1972)

    Google Scholar 

  14. Counihan, J.: A method of simulating a neutral atmospheric boundary layer in a wind tunnel, Proc. AGARD Conf. Nr. 48, Paper Nr. 14 (1969)

    Google Scholar 

  15. Gerhardt, H. J., Kramer, C.: Atmosphärische Turbulenz und ihre Simulation im Windkanal. Koll. über Industrieaerodynamik, Aachen 1974, Teil 2, Bauwerksaerodynamik, S. 5–17

    Google Scholar 

  16. Stevenson, D. C.: Simulation in wind-tunnels of the natural wind, Proc. Sem. Wind Effects on Buildings and Structures, Univ. of Auckland, New Zealand, 1971, Paper No. 3

    Google Scholar 

  17. Cowdrey, C. F.: A simple method for the design of wind-tunnel velo city-profile grids, NPL Aero Note 1055 (1967)

    Google Scholar 

  18. Cermak, I. E.: Aerodynamics of buildings, Annual Review of Fluid Mech. 8, S. 75–106 (1976)

    Article  Google Scholar 

  19. Wuest, W.: Strömungsmeßtechnik, Vieweg 1969

    Book  Google Scholar 

  20. Cook, N. J.: Adapting the DISA S1F32 low pressure transducer for use in pressure scanning switches, J. of Physics E., Scientific Instruments 8, S. 267–268 (1975)

    Article  Google Scholar 

  21. Fejer, A. A.: Flow visualization techniques for the study of the aerodynamics of bluff bodies and of unsteady flows, von Karman Institute for Fluid Dynamics, lectures series 45 “Wind effects on buildings and structures”, 1972

    Google Scholar 

  22. Whitbread, R. E.: Model simulation of wind effects on structures, Proc. of the Conference “Wind Effects on Buildings and Structures”, Teddington 1963, S. 284–306

    Google Scholar 

  23. Eaton, K., Mayne, I. Cook, J.: Wind loads on low-rise buildings — effects of roof geometry, Proc. 4th Int. Conf. on Wind Effects on Buildings and Structures, London 1975, S. 95–110

    Google Scholar 

  24. Torrance, V. B.: Wind profiles over a suburban site and wind effects on a half full scale model building, Build. Sci. 7/1, S.1–12 (1972)

    Article  MathSciNet  Google Scholar 

  25. Newberry, C. W., Eaton, K. J., Mayne, J. R.: The nature of gust loading on tall buildings, Proc. Int. Res. Sem. “Wind Effects on Buildings and Structures”, Ottawa 1967, S. 399–428

    Google Scholar 

  26. Morrison, J. G.: The development of a miniature gust anemometer, Proc. Symp. Wind Effects on Buildings and Structures Loughborough 1968, Paper 30

    Google Scholar 

  27. Neuerburg, W.: Meßgerät zur Bestimmung von Größe und Richtung einer stationären oder instationären Strömungsgeschwindigkeit DB-Patent Nr. 1 933009

    Google Scholar 

  28. Sachs, P.: Wind Forces in Engineering, Pergamon Press, 1972

    Google Scholar 

  29. Grigg, P. F., Sexton, D. E.: Experimental techniques for wind tunnel tests on model buildings, Bunding Res. Est. CP 43/74, 11 Seiten (1974)

    Google Scholar 

  30. Mayne, I. R.: A wind-pressure transducer, Buildings Research Station CP 17/70 (1970)

    Google Scholar 

  31. Eaton, K. J., Mayne, J. R., Menzies, J. B., Buller, P. S. J.: Full-scale fluid dynamic measurements, Bunding Res. Est. CP 71/74 (1974)

    Google Scholar 

  32. Eaton, K.J., Mayne, J. R.: The measurement of wind pressures on two-storey houses at Aylesburg, Britisch Res. Est. CP 70/74 (1974)

    Google Scholar 

  33. Peterka, J. A.: Fluctuating pressure tests for cladding design, Proc. ASCE National Struct. Eng. Conv., New Orleans 1975

    Google Scholar 

  34. Ruscheweyh, H.: Beitrag zur Windbelastung hoher kreiszylinderähnlicher schlanker Bauwerke im natürlichen Wind bei Reynolds-Zahlen bis Re = 1,4 × 107, Diss. TH Aachen 1974

    Google Scholar 

  35. Eaton, K. J., Mayne, J. R.: Strain measurements at the GPO Tower, London, Building Res. Station CP 29/71 (1971)

    Google Scholar 

  36. Smart, H. R., Stevens, L. K., Joubert, P. N.: Dynamic structural response to natural wind, Proc. Int. Res. Sem. Wind Effects on Buildings and Structures, Ottawa 1967, S. 595–630

    Google Scholar 

  37. Schneider, F. X., Wittmann, F. H.: Ergebnisse und Diskussion der Wind-und Schwingungsmessungen am Münchener Fernsehturm, Koll. über Industrieaerodynamik, Aachen 1972, Teil 2 Bauwerksaerodynamik, S. 47–62

    Google Scholar 

  38. Wootten, L. R.: The estimation of the structural damping of civil engineering structures, Symp. on Applications of Experimental and Theoretical Dynamics, Southampton University 1972

    Google Scholar 

  39. Jeary, A. P., Winney, P. E.: Determination of structural damping of a large multi-flue chimney from the response to wind excitation, I.C.E. Proceedings, Dec. 1972, Part 2, Technical Note 65

    Google Scholar 

  40. Kowalewski, J.: Neuere Erkenntnisse über Schwingungen von Bauwerken im Wind, Rhein. Westf. Akademie der Wissenschaften, Vorträge N256, S. 7–50 (1976)

    Google Scholar 

  41. Burrough, H. L., Jeary, A. P., Wilson, J. M.: Structural dynamics of large multi-flue chimneys, Proc. of the Fourth Int. Conf. Wind Effects on Buildings and Structures, Heathrow 1975, S. 497–514

    Google Scholar 

  42. Müller, F. P., Nieser, H.: Messungen winderregter Schwingungen an einem Stahlbetonschornstein, Koll. über Industrieaerodynamik Aachen 1974, Teil 2, Bauwerksaerodynamik, S. 99–109

    Google Scholar 

  43. Ruscheweyh, H., Hirsch, H.: Full scale measurements of the dynamic response of tower shaped structures, Proc. of the Fourth Int. Conf. Wind Effects on Buildings and Structures, Heathrow 1975, S. 133–142

    Google Scholar 

  44. Pacht, H.: Schwingungsuntersuchungen an stählernen Turmbauwerken wie Maste und Schornsteine aus der Sicht der Praxis, VDI-Bericht Nr. 221, S. 127–133 (1974)

    Google Scholar 

  45. Shears, M.: Report on the measurement of wind and vibration at the Emley Moor television tower, Int. Symp. on Vibration Problems in Industry, Keswick 1973, Paper No. 122

    Google Scholar 

  46. Paquet, J.: Measurement and interpretation of wind effect on a 50 m high tower, Proc. of the Fourth Int. Conf. on Wind Effects on Buildings and Structures, Heathrow 1975, S. 537–547

    Google Scholar 

  47. Sharan, V.: On the characteristics of flow around building models with a view to simulating the minimum fraction of the natural boundary layer, Int. J. mech. Sci. 17, S. 557–563 (1975)

    Article  Google Scholar 

  48. Gandemer, J.: Dynamic simulation of the atmospheric boundary layer in neutral stability large scale turbulence, Centre Scientifique et Technique de Batiment, Etablissement de Nantes

    Google Scholar 

  49. Teunissen, H. W.: Simulation of the planetary boundary layer in a multiple-jet wind tunnel, UTIAS Rep. No. 182, University of Toronto (1972)

    Google Scholar 

  50. MacDonald, A.: Wind Loading on Buildings, Appl. Science Publ. Ltd., 1975, S. 30–31

    Google Scholar 

  51. MacKeon, R. J., Melbourne, W. H.: Wind Tunnel blockage effects and drag on bluff bodies in a rough wall boundary layer, Proc. of the 3rd Int. Conf. on Wind Effects on Buildings and Structures, Tokyo 1971, S. 263–272

    Google Scholar 

  52. Dalgliesh, W. A., Wright, W., Schriever, W. R.: Wind pressure measurements on a full-scale high rise office building, Proc. Int. Res. Sem. Wind Effects on Buildings and Structures, Ottawa 1967, Vol. 1, S. 167–200

    Google Scholar 

  53. Schachel, R., Sockel, H., Horvat, M.: Gesimsausbildung bei Hochbauten — Einfluß des Gesimses auf die Umströmung des Gebäudes, Österr. Inst. f. Bauforschung, Jahresbericht 1974, S. 56–60

    Google Scholar 

  54. Scruton, C.: Aerodynamics of structures, Proc. Int. Res. Sem. Wind Effects on Buildings and Structures, Ottawa 1967, S. 117–161

    Google Scholar 

  55. Cook, N. J.: On simulating the atmospheric boundary layer in wind tunnels, Building Res. Est. CP 71/78 (1978)

    Google Scholar 

  56. Beranek, W. J., van Koten, H.: Visual techniques for the determination of wind environment, Proc. of the 3rd Colloquium on Industrial Aerodynamics, Aachen 1978, Buildings Aerodynamics, Part 3, S. 1–15

    Google Scholar 

  57. Nagib, H. M., Morkovin, M. V., Yung, J. T., Tanatichat, J.: On modeling of atmospheric surface layers by the counter-jet technique, AIAA J. 14/2, S. 185–190 (1976)

    Article  Google Scholar 

  58. Vermeulen, P.: Wind patterns close to building facades, Proc. of the 4th Coll. on Industrial Aerodynamics Aachen 1980, Buildings Aerodynamics, Part 1, S. 187–197

    Google Scholar 

  59. Templin, J. T., Cooper, K. R.: Design and performance of a multidegree-of-freedom aeroelastic building model, Proc. of the 4th Coll. on Industrial Aerodynamics, Aachen 1980, Buildings Aerodynamics, Part 2, S. 124–135

    Google Scholar 

  60. Irwin, H.P., Cooper, K. R., Girard, R.: Correction of distortion effects caused by tubing systems in measurements of fluctuating pressures, J. Ind. Aerod. 5, S. 93–107 (1979)

    Article  Google Scholar 

  61. Davenport, A. G.: The use of taut strip models in the prediction of the response of long span bridges to turbulent wind, Flow-induced Structural Vibrations, ed. E. Naudascher, Springer-Verlag 1974, S. 373–381

    Google Scholar 

  62. Davenport, A. G., Isyumov, N., Rothman, H., Tanaka, H.: Wind induced response of suspension bridges — wind tunnel model and full scale observations, Proc. of the 5th Int. Conf. on Wind Eng., Fort Collins 1979, ed. J. E. Cermak, Vol. 2, S. 807–824

    Google Scholar 

  63. Vickery, P. J., Surry, D.: The Aylesbury experiments revisited — further wind tunnel tests and comparisons, Proc. of the 5th Coll. on Industrial Aerodynamics, Aachen 1982, Building Aerodynamics Annex, S. 19–42

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Sockel, H. (1984). Versuchstechnik, Modellgesetze. In: Aerodynamik der Bauwerke. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-89735-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89735-0_7

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-08845-3

  • Online ISBN: 978-3-322-89735-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics