Advertisement

Some Experiences with Spectral Methods

  • A. J. Renkema
  • R. Verstappen
  • R. W. de Vries
  • P. J. Zandbergen
Chapter
Part of the Notes on Numerical Fluid Mechanics book series (volume 17)

Abstract

Since the beginning of the seventies there is a growing interest in spectral methods as introduced by S.A. Orszag in 1970 [1]. Especially for problems with a high degree of continuity these methods can lead to very accurate results. In general problems are treated on simple geometries such as squares and boxes, either directly or by transformation of the region of interest.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gottlieb, D; Orszag, S.A.; Numerical Analysis of spectral methods; theory and applications. Regional Conference Series in Applied Mathematics, Siam 1977.zbMATHCrossRefGoogle Scholar
  2. 2.
    Fox, L; Parker, I.B. Chebyshev Polynomials in Numerical Analysis Oxford University Press, London 1968.Google Scholar
  3. 3.
    Verstappen, R. Applications of the spectral method for the calculation of a two-dimensional incompressible flow. (In Dutch) Master Thesis, University Twente, Oct. 1985.Google Scholar
  4. 4.
    Verstappen, R; Ten Thije Boonkamp, J.; De Vries, R; Zandbergen, P.J. Solution of the Navier-Stokes equation using an efficient spectral method. To appear in: Proceedings of the 10e International Conference on numerical methods in fluid dynamics.Google Scholar
  5. 5.
    Brandt, A. Multi-Level Adaptive Solutions to Boundary- Value Problems Mathematics of Computation, Volume 31, number 138, April 1977, p. 333–390.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Zang, T.A.; Wong, Y.S.; Hussaini, M.Y. Spectral Multigrid methods for Elliptic Equations, Journ. of. Comp. Phys. 48, 1982 p 458–501.MathSciNetGoogle Scholar
  7. 7.
    Zang, T.A.; Wong, Y.S.; Hussaini, M.Y. Spectral Methods for Elliptic Equations II. Journ. of Comp. Phys. 54, 1984, p 489–507.MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Brandt, A; Fulton S.R.; Taylor, G.D. Improved Spectral Multigrid Methods for Periodic Elliptic Problems. Journ. of Comp. Phys. 58, 1985, p. 96–112.MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Malik, M.R.; Zang, T. A.; Hussaini, M.Y. A Spectral Collocation Method for the Navier-Stokes Equations. Journ. of Comp. Phys. II 1983, p. 64–88.MathSciNetGoogle Scholar
  10. 10.
    Kleiser, L; Schumann, U; Spectral simulation of the Lamion turbulent transition process in plane Poiseuille flow. Proc. of I CASE symp. on Spectral Methods SIAM CBMS, 1983.Google Scholar
  11. 11.
    Taylor, G.I.; Green A.E. Mechanism of the production of small eddies from large ones. Proceedings R. Soc. London, Ser. A158, 1937, p. 499–521.ADSCrossRefGoogle Scholar
  12. 12.
    Canuto, C; Quateroni, A.; Preconditioned Minimal Residual Methods for the iterative solution of systems of linear equations, Journ. of Comp. Phys. 26, 1978 p. 43–65.CrossRefGoogle Scholar
  13. 13.
    Kershaw, D.S. The incomplete cholesky Conjugate gradient method for the iterative solution of systems of linear equation Journal of Comp. Physics 26, 1978 p. 43–65.MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig 1987

Authors and Affiliations

  • A. J. Renkema
    • 1
  • R. Verstappen
    • 1
  • R. W. de Vries
    • 1
  • P. J. Zandbergen
    • 1
  1. 1.Twente University of TechnologyEnschedeThe Netherlands

Personalised recommendations