Skip to main content

Problems, Analysis, and Solutions of the Equations for Viscoelastic Flow

  • Chapter
Research in Numerical Fluid mechanics

Part of the book series: Notes on Numerical Fluid Mechanics ((NNFM,volume 17))

Summary

After summarizing the basic equations, the type of the equations for the upper-convected Maxwell model and for the Jeffreys-type models is derived. It is shown that the corotational Maxwell model changes type which is unacceptable from a physical point of view. The Jeffreys-type models (including the Leonov model) have a drastic different type compared to the Maxwell models and are physically more appealing. Correct boundary conditions are briefly discussed for a linearized upper-convected Maxwell model. The boundary conditions for the Jeffreys models are shown to be equal to the boundary conditions for the Navier-Stokes equations, supplemented by boundary conditions for all the extra stresses at the inflow boundary. Jump conditions are derived for Jeffreys-type models. It is shown that in complex flows with sharp corners discontinuities may arise. Numerical methods are discussed that take into account the special type of the equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ahrens, D.D. Joseph, M. Renardy and Y. Renardy (1984): “Remarks on the stability of viscometric flow”, Rheol. Acta 23, 345–354.

    Article  MATH  Google Scholar 

  2. G. Astarita, and G. Marrucci (1974): “Principles of Non-Newtonian Fluid Mechanics”, McGraw-Hill, London.

    Google Scholar 

  3. R.B. Bird, R.C. Armstrong and O. Hassager (1977): “Dynamics of Polymer Liquids”, Vol. I, John Wiley, New York.

    Google Scholar 

  4. R. Courant and D. Hilbert (1962): “Methods of Mathematical Physics”, Vol. 2, Interscience, New York.

    MATH  Google Scholar 

  5. M.J. Crochet, A.R. Davies and K. Walters (1984): “Numerical Simulation of Non-Newtonian flow”, Elsevier, Amsterdam.

    MATH  Google Scholar 

  6. F. Dupret, J.M. Marchal and M.J. Crochet (1985): “On the consequence of discretization errors in the numerical calculation of visco-elastic flow”, J. Non-Newt. Fluid Mech. 18, 173–186.

    Article  MATH  Google Scholar 

  7. H. Janeschitz-Kriegl (1983): “Polymer Melt Rheology and Flow Birefringence”, Springer-Verlag, Berlin.

    Book  Google Scholar 

  8. D.D. Joseph, M. Renardy and J.C. Saut (1985): “Hyperbolicity and change of type in the flow of viscoelastic fluids”, Arch. Rat.. Mech. Anal. 87, 213–251.

    Article  MathSciNet  MATH  Google Scholar 

  9. A.I. Leonov (1976): “Nonequilibrium thermodynamics and rheology of viscoelastic polymer media”, Rheol. Acta 15, 85–98.

    Article  MATH  Google Scholar 

  10. M. Luskin (1984): “On the classification of some equations for viscoelasticity”, J. Non-Newt. Fluid Mech. 16, 3–11.

    Article  MATH  Google Scholar 

  11. H.K. Moffatt (1964): “Viscous and resistive eddies near a sharp corner”, J. Fluid Mech. 18, 1–18.

    Article  ADS  MATH  Google Scholar 

  12. S.A. Regirer and I.M. Rutkevich (1968): “Certain singularities of the hydrodynamic equations of non-Newtonian media”, PMM 32, 942–945.

    MATH  Google Scholar 

  13. I.M. Rutkevich (1969): “Some general properties of the equations of viscoelastic incompressible fluid dynamics”, PMM 33, 42–51.

    MathSciNet  MATH  Google Scholar 

  14. I.M. Rutkevich (1970): “The propagation of small perturbations in a viscoelastic fluid”, PMM 34, 41–56.

    Google Scholar 

  15. C. Truesdell (1977): “A First Course in Rational Continuum Mechanics”, Vol. I, Academic Press, New York.

    MATH  Google Scholar 

  16. J.S. Ultman and M.M. Denn (1970): “Anamolous heat transfer and a wave phenomenon in dilute polymer solutions”, Trans. Soc. Rheol. 14, 307–317.

    Article  Google Scholar 

  17. J.Y. Yoo, M. Ahrens and D.D. Joseph (1985): “Hyperbolicity and change of type in sink flow”, J. Fluid Mech. 153, 203–214.

    Article  ADS  MATH  Google Scholar 

  18. J.Y. Yoo and D.D. Joseph (1985): “Hyperbolicity and change of type in the flow of viscoelastic fluids through channels”, J.Non-Newt. Fluid Mech. 19, 15–41.

    Article  MATH  Google Scholar 

  19. J. van der Zanden, G.D.C. Kuiken, A. Segal, W.J. Lindhout and M.A. Hulsen (1984): “Numerical experiments and theoretical analysis of the flow of an elastic liquid of the Maxwell-Oldroyd type in the presence of geometrical singularities”, Dept. of Mech. Eng., Delft University of Technology, WTHD report no. 164. Similar to: Applied Scientific Research 42 (1985) 303–318.

    Google Scholar 

  20. M.A. Hulsen (1986): “Analysis of the equations for viscoelastic flow: type, boundary conditions and discontinuities.”, Dept. of Mech. Eng., Delft University of Technology, WTHD report.

    Google Scholar 

  21. R.K. Upadhyay and A.I. Isayev (1986): “Simulation of two-dimensional planar flow of viscoelastic fluid”, Rheol. Acta 25, 80–94.

    Article  Google Scholar 

  22. X.L. Luo and R.I. Tanner (1986): “A streamline scheme for solving viscoelastic flow problems. Part I: Differential constitutive equations”, J.Non-Newt. Fluid Mech. 21, 179–199.

    Article  MATH  Google Scholar 

  23. X.L. Luo and R.I. Tanner (1986): “A streamline scheme for solving viscoelastic flow problems. Part II: Integral constitutive models”, J.Non-Newt. Fluid Mech. 22, 61–89.

    Article  MATH  Google Scholar 

  24. P.J. Slikkerveer, Master’s Thesis, To be published in 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pieter Wesseling

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig

About this chapter

Cite this chapter

Hulsen, M.A., van der Zanden, J. (1987). Problems, Analysis, and Solutions of the Equations for Viscoelastic Flow. In: Wesseling, P. (eds) Research in Numerical Fluid mechanics. Notes on Numerical Fluid Mechanics, vol 17. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-89729-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89729-9_6

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-08090-7

  • Online ISBN: 978-3-322-89729-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics