Design Optimization of High Performance Satellites

  • R. Callies
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NONUFM, volume 48)


Modern techniques of optimization and control considerably increase the performance of robotic satellites. As an example, a small Venus mission is presented for such a spacecraft. Not only a point-mass model is considered, but the full rigid body dynamics of a highly realistic model spacecraft is taken into account. The arising problems are formulated mathematically as boundary-value problems for complex systems of highly nonlinear differential equations. All scientific and technological constraints are exactly included as state and control constraints and interior point conditions. The numerical solution of the boundary-value problems is by a modified multiple shooting method. Problems of scaling and extremely small convergence areas require new solution techniques. For the first time the proof of mission feasibility is given. Design optimization leads to a cheap, robust satellite.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Callies, R., Optimal design of a mission to Neptune. In: Optimal Control — Calculus of Variations, Optimal Control Theory and Numerical Methods. Eds.: R. Bulirsch, A. Miele, J. Stoer, K.H. Well. International Series of Numerical Mathematics, Vol. 111, Birkhäuser Verlag, Basel (1993), S. 341–349.Google Scholar
  2. [2]
    Iglseder, H., Arens-Fischer, W., Keller, H.U., Arnold, G., Callies, R, Fick, M., Glassmeier, K.H., Hirsch, H., Hoffmann, M., Rath, H.J., Kührt, E., Lorenz, E., Thomas, N., Wäsch, R, INEO — Imaging of Near Earth Objects. COSPAR-Paper l-M.1.03, Washington (1992).Google Scholar
  3. [3]
    Junkins, J.L., Turner, J.D., Optimal Spacecraft Rotational Maneuvers, Elsevier Science Publ. Comp., New York, 1986.Google Scholar
  4. [4]
    Bulirsch, R, Callies, R, Optimal trajectories for a multiple rendezvous mission to asteroids. Acta Astronautica 26 (1992) 587–597.CrossRefGoogle Scholar
  5. [5]
    Larson, W.J., Wertz, J.R. (ed.), Space Mission Analysis and Design, Kluwer Academic Publisher, Dordrecht 1992.Google Scholar
  6. [6]
    Ruppe, H.O., Introduction to Astronautics, Academic Press, New York 1966.Google Scholar
  7. [7]
    Bryson, A.E., Ho, Y.-C., Applied Optimal Control, Revised Printing, Hemisphere Publishing Corp., Washington D.C., 1975.Google Scholar
  8. [8]
    Oberle, H.J., Numerical Computation of Minimum-Fuel Space-Travel Problems by Multiple Shooting, Report TUM-MATH-7635, Dept. of Mathematics, Munich Univ. of Technology, Germany, 1976.Google Scholar
  9. [9]
    Bulirsch, R., Die Mehrzielmethode zur numerischen Losung von nichtlinearen Randwertproblemen und Aufgaben der optimalen Steuerung, Report of the Carl-Cranz-Gesellschaft e. V., Oberpfaffenhofen, 1971.Google Scholar
  10. [10]
    Deuflhard, P., Ein Newton- Verfahren bei fast singularer Funktionalmatrix zur Losung von nichtlinearen Randwertaufgaben mit der Mehrzielmethode, Thesis, Cologne, 1972.Google Scholar
  11. [11]
    Oberle, H J., Numerische Behandlung singulärer Steuerungen mit der Mehrzielmethode am Beispiel der Klimatisierung von Sonnenhausern, Thesis, Munich, 1977.Google Scholar
  12. [12]
    Bulirsch, R., Stoer, J., Numerical Treatment of Ordinary Differential Equations by Extrapolation Methods, Num. Math. 8 (1966) 1–13.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Callies, R., Optimale Flugbahnen einer Raumsonde mit Ionentriebwerken, Thesis, Munich, 1990.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1994

Authors and Affiliations

  • R. Callies
    • 1
  1. 1.Mathematisches Institut, FORTWIHRTechnische Universität MünchenMünchenGermany

Personalised recommendations