Numerical Simulation of Crystal Growth Processes

  • G. Müller
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NONUFM, volume 48)


The present status of numerical simulation of crystal growth processes, especially by the Czochralski technique, is discussed by comparison of numerical and experimental results. It is shown in which cases the convective heat transport in the melt has to be considered in order to give realistic numerical results. Furthermore, examples were presented in which 2-dimensional simulations agree with experiments and cases where a 3-dimensional simulation is necessary. Finally, it will be shown that for a simulation of doping distribution in the crystal, i.e. segregation, the crystal melt interface has to be treated as a “moving boundary”.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BARRET, C.R.: “Silicon Valley, What Next?”, Plenary adress given at the 1993 MRS Spring Meeting, MRS Bulletin, Juli 1993, 3–10.Google Scholar
  2. [2]
    Zulehner, W. and Huber, D.: “Czochralski-Grown Silicon”, Crystals Vol. 8, J. Grabmaier (ed.), Springer Verlag, Heidelberg (1982), 1–143.Google Scholar
  3. [3]
    Bullis, W.M. and O’Mara, W.C.: “Large-Diameter Silicon Wafer Trends”, Solid State Technology, April 1993, 59–65.Google Scholar
  4. [4]
    Hurle, D.T.J.: “Crystal Pulling from the Melt”, Springer-Verlag, Heidelberg 1994.Google Scholar
  5. [5]
    Moller, G.: “Crystal Growth from the Melt”, CRYSTALS Vol.12, H.C. Freyhardt (ed.), Springer Verlag, Heidelberg 1988.Google Scholar
  6. [6]
    Moller, G. (ed.): “Improvement of Manufactoring Processes by Semiconductor Crystala by Modelling of the Transport Processes”, University Erlangen-Nürnberg, Final Report of a project sponsored by the Volkswagen Foundation (July 1993).Google Scholar
  7. [7]
    Kinney, T.A., Bornside, D.E. and Brown, R.A.: “Quantitative assessment of an integrated hydrodynamic thermal-capillary model for large diameter-Czochralski growth of silicon: comparison of predicted temperature field with experiment”, J. Crystal Growth 122 (1993) 413–434.CrossRefGoogle Scholar
  8. [8]
    Dupret, F., Nicodeme, P., Ryckmans, Y., Wouters and Crochet, M.J.: “Global modelling of heat transfer in crystal growth furnaces”, Int. J. Heat Mass Transfer 33 (1990) 1849–1871.zbMATHCrossRefGoogle Scholar
  9. [9]
    Miyahara, S. et al.: “Global heat transfer model for Czochralski crystal growth based of difüse-gray radiation”, J. Crystal Growth 99 (1990) 697–701.CrossRefGoogle Scholar
  10. [10]
    Koai, K., Seidl, A., Leister, H.-J., Moller, G. and Kohler, A.: “Modelling of thermal fluid flow in the Czochralski process (LEC) and comparison with experiments”, J. Crystal Growth 1993 (accepted).Google Scholar
  11. [11]
    Baumgartl, J., Bune, A., Koai, K., Moller, G. and Seidl, A.: “Global simulation of heat transport, including melt convection in a Czochralski crystal growth process — combined finite element/finite volume approach”, E-MRS 1993 Spring Meeting, Strasbourg (F) 4–7 May 1993, Symposium F.Google Scholar
  12. [12]
    Seidl, A., Mccord, G., Muller, G. and Leister, H.J.: “Experimental observation and numerical simulation of wave patterns in a Czochralski silicon melt”, J. Crystal Growth (1993) submitted.Google Scholar
  13. [13]
    Hofmann, D., Jung, Th. and Moller, G.: “Growth of 2 inch Ge:Ga crystals by the dynamical vertical gradient freeze process and its numerical modelling including transient segregation”, J. Crystal Growth 128 (1993) 213–218.CrossRefGoogle Scholar
  14. [14]
    Leister, H.-J. and Peric, M.: J. Crystal Growth 123 (1992) 567–574.CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1994

Authors and Affiliations

  • G. Müller
    • 1
  1. 1.Institut für WerkstoffwissenschaftenUniv. Erlangen-NürnbergErlangenGermany

Personalised recommendations