Process Simulation for the Semiconductor Industry

  • J. Lorenz
  • F. Durst
  • H. Ryssel
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NONUFM, volume 48)


A brief overview of approaches used and problems encountered in the simulation of the semiconductor fabrication process steps ion implantation, diffusion, oxidation, and layer deposition is given. Some recent improvements obtained at Erlangen in the development of physical models are described. Problems occuring for two- and especially for three-dimensional simulations are outlined. Their relationships to high-performance computing are sketched, and approaches for their solution are developed. Model and program requirements are discussed from the viewpoint of the requirements of industrial application. Furthermore, the importance of equipment simulation is discussed and an example for this strongly developing field is given.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.P. Biersack, L.G. Haggmark, A Monte-Carlo Computer Program for the Transport of Energetic Ions in Amorphous Targets, Nucl. Instrum. Meth. 174. (1980) pp. 257.CrossRefGoogle Scholar
  2. [2]
    M.T. Robinson, I.M. Torrens, Computer Simulation of Atomic-displacement Cascades in Solids in the Binary-Collision Approximation, Phys. Rev. B9, (1974) pp. 5008.Google Scholar
  3. [3]
    I.R. Chakarov, R.P. Webb, Computer Simulation of B, P and As Channeling Profiles in Silicon, in: Proc. COSIRES 1992 (ed. J.P. Biersack), Berlin (1993).Google Scholar
  4. [4]
    H. Stippel, S. Selberherr, Three Dimensional Monte-Carlo Simulation of Ion Implantation with Octree Based Point Location, in: Proceedings of the 1993 International Workshop on VLSI Process and Device Modeling (1993 VPAD), Nara, Japan, (1993) pp. 122.Google Scholar
  5. [5]
    K.B. Winterbon, Ion Implantation in Inhomogeneous Materials, Appl. Phys. Lett. 31 10, (1977) pp. 649.CrossRefGoogle Scholar
  6. [6]
    J. Lorenz, W. Krüger, A. Barthel, Simulation of the lateral spread of implanted ions: theory, in: Proc. NASECODE VI (ed. J.J.H. Miller), Boole Press, Dublin, (1989) pp. 513.Google Scholar
  7. [7]
    W.K. Hofker, D.P. Oosthoek, N.J. Koeman. H.A.M. De Grefte, Concentration Profiles for Boron Implantations in Amorphous and Poly crystalline Silicon, Radiation Effects 24, (1975) pp. 223.CrossRefGoogle Scholar
  8. [8]
    F. Jahnel, H. Ryssel, G. Prinke, K. Hoffmann, K. Müller, J.P. Biersack, R. Henkelmann, Nucl. Instrum. Meth. 182/183, (1981) pp. 223.CrossRefGoogle Scholar
  9. [9]
    M. Kuhn, Analytische Modelle fur Implantationsverteilungen in Silicium, Diplomarbeit, Lehrstuhl für Elektronische Bauelemente, Universität Erlangen- Nürnberg, (1987).Google Scholar
  10. [10]
    A.F. Tasch, H. Shin, C. Park, An Improved Approach to Accurately Model Shallow B and BF2 Implants in Silicon, J. Electrochem. Soc. 136 (3), (1989) pp. 810.CrossRefGoogle Scholar
  11. [11]
    H. Ryssel, J. Lorenz, K. Hoffmann, Models for the Implantation into Multilayer Targets, Appl. Phys. A 41, (1986) pp. 201.CrossRefGoogle Scholar
  12. [12]
    R.J. Wierzbicki, J.P. Biersack, A. Barthel, J. Lorenz, H. Ryssel, Reflection Approach for the Analytical Description of Light Ions Implanted into Bilayer Structures, in: Proc. CQSIRES 1992 (ed. J.P. Biersack), Berlin (1993).Google Scholar
  13. [13]
    J. Lorenz, C. Hill, H. Jaouen, C. Lombardi, C. Lyden, K. de Meyer, J. Pelka, A. Poncet, M. Rudan, S. Solmi, The STORM Technology CAD System, in: Technology CAD Systems (eds. F. Fasching, S. Halama, S. Selberherr), Springer Verlag, Wien, New York, (1993) pp. 163.CrossRefGoogle Scholar
  14. R.J. Wierzbicki, J. Lorenz, H. Ryssel, Advanced Analytical Models for the Multidimensional Simulation of Ion Implantation, to be published.Google Scholar
  15. [15]
    J. Lorenz, R.J. Wierzbicki, Efficient Multidimensional Simulation of Ion Implantation into Multilayer Structures, in: Proc. of the 1993 International Workshop on VLSI Process and Device Modeling (VPAD 1993), Nara, Japan, (1993) pp. 84.Google Scholar
  16. J. Lorenz, F. Meyer, to be published.Google Scholar
  17. [17]
    M. Orlowski, Progress in Process Simulation for Submicron MOSFETs, in: Simulation of Semiconductor Devices and Processes Vol. 3 (eds. G. Bac- carani, M. Rudan), Tecnoprint, Bologna, (1989) pp. 393Google Scholar
  18. [18]
    R. Dürr, Beschreibung der Dualen Diffusion von Dotieratomen in Silicium für die Anwendung in der Prozefisimulation, Dissert ationsschrift, Universität Erlangen-Nürnberg (1991).Google Scholar
  19. [19]
    K. Maser, Dotandendiffusion und -drift im Silizium mit inhomogen verteilten Vakanzen, Experimentelle Technik der Physik 34, (1986) pp. 213.Google Scholar
  20. [20]
    M. Orlowski, Unified Model for Impurity Diffusion in Silicon, Appl. Phys. Lett. 53, (1988) 1323.CrossRefGoogle Scholar
  21. [21]
    S. List, P. Pichler, H. Ryssel, Atomistic Evaluation of Diffusion Theories for the Diffusion of Dopants in Vacancy Gradients, in: Simulation of Semiconductor Devices and Processes Vol. 5 (eds. S. Selberherr, H. Stippel, E. Strasser), Springer Verlag, Wien, New York, (1993) pp.97.CrossRefGoogle Scholar
  22. [22]
    P. Pichler, Direct Experimental Evidence for Diffusion of Dopants via Pairs with Intrinsic Point Defects, Appl. Phys. Lett. 60 (8), (1992) 953.CrossRefGoogle Scholar
  23. [23]
    A.F. Franz, G.A. Franz, S. Selberherr, C. Ringhofer, P. Markovich, Finite Boxes — A Generalization of the Finite Difference Method Suitable for Semiconductor Device Simulation, IEEE Trans. El. Dev. ED 30 (9), (1982) pp. 1070.CrossRefGoogle Scholar
  24. [24]
    P. Conti, Grid Generation for Three-dimensional Semiconductor Device Simulation, in: Series in Microelectronics Vol. 12 (eds. W. Fichtner, W. Guggenbühl, H. Melchior, G.S. Moschytz), Hartung-Gorre-Verlag, Konstanz, (1991).Google Scholar
  25. [25]
    H. Wille, E. Burte, H. Ryssel, Simulation of the Step Coverage for Chemical Vapor Deposited Silicon Dioxide, J. Appl. Phys. 71, (1992) pp. 3532.CrossRefGoogle Scholar
  26. [26]
    J. Lorenz, C. Hill, H. Jaouen, C. Lombardi, C. Lyden, K. de Meyer, J. Pelka, A. Poncet, M. Rudan, S. Solmi, The STORM Technology CAD System, in: Technology CAD Systems (eds. F. Fasching, S. Halama, S. Selberherr), Springer Verlag, Wien (1993) pp. 163.CrossRefGoogle Scholar
  27. H. Wille. E.P. Burte, A Dual Sticking Coefficient Chemical Vapor Deposition Model, in: Proc. ESSDERC 92 (eds. H.E. Maes, R.P. Mertens, R.J. Van Overstraeten), Elsevier, Amsterdam, (1992) pp. 503.Google Scholar
  28. [28]
    W.H. Mills, High Temperature Furnace Simulation with Surface to Surface Radiation, PHOENICS Journal of Computational Fluid Dynamics 4 (4), (1991) pp. 389.Google Scholar
  29. [29]
    F. Durst, L. Kadinski, M. Peric, M. Schafer, Numerical Study of Transport Phenomena in MOCVD Reactors Using a Finite Volume Multigrid Solver, J. Cryst. Growth 125, (1992) pp. 612.CrossRefGoogle Scholar
  30. [30]
    Yu.N. Makarov, E.V. Subashieva, A.N. Zabolotskikh, A.I. Zhmakin, Numerical Simulation of Flow and Heat Transfer in Epitaxial reactors, in: Numerical Methods in Thermal Problems VIII (ed. R.W. Lewis), Pineridge Press, (1993) pp. 1298.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1994

Authors and Affiliations

  • J. Lorenz
    • 1
    • 2
  • F. Durst
    • 1
    • 3
  • H. Ryssel
    • 1
    • 2
    • 4
  1. 1.Bayerischer Forschungsverbund für Technisch-Wissenschaftliches HochleistungsrechnenGermany
  2. 2.Bereich BauelementetechnologieFraunhofer-Institut für Integrierte SchaltungenErlangenGermany
  3. 3.Lehrstuhl für StrötmungsmechanikUniversität Erlangen-NürnbergErlangenGermany
  4. 4.Lehrstuhl für Elektronische BauelementeUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations