Skip to main content

Dual-Porosity Modelling of Contaminant Transport in Fractured Porous Formations: the Effect of Spatial Variations of Matrix Block Properties

  • Chapter
Modeling and Computation in Environmental Sciences

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NONUFM,volume 59))

  • 152 Accesses

Summary

Contaminant transport in fractured porous formations is often simulated with dual-porosity models. In such models the heterogeneous formation is separated into two coupled continua, one representing the fractures, one representing the rock matrix. The main objective of the present study is to investigate the effect of spatial variations of matrix block properties (especially such as size and shape) and to determine effective continuum parameters for the matrix continuum. Numerical simulations are performed with a newly developed code applying a Lagrangian-Eulerian algorithm for the transport simulation in stochastically generated discrete fracture systems combined with a sophisticated Finite Element formulation to account for molecular diffusion in matrix blocks of arbitrary size, shape and material properties. To check the accuracy of the continuum approach, breakthrough curves are compared of two different sets of simulation runs, one considering the exact matrix properties, the second using different averaged effective continuum parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barenblatt, G.E.; Zheltov, I.P.; Kochina, I.N. (1960): “Basic Concept on the Theory of Homogeneous Liquids in Fissured Rocks”, J. Appl. Math. Mech., Engl. Transi., Vol 20, pp 852–864.

    Google Scholar 

  2. Bibby, R. (1981): “Mass Transport of Solutes in Dual-Porosity Media”, Water Resources Research, Vol 17, No 4, pp 1075–1081.

    Article  Google Scholar 

  3. Birkhölzer, J. (1994): “Numerische Untersuchungen zur Mehrkontinuumsmodellierung von Stofftransportvorgängen in Kluftgrundwasserleitern”, Mitteilungen des Instituts für Wasserbau und Wasserwirtschaft der RWTH Aachen, Heft 93.

    Google Scholar 

  4. Huyakorn, P.S.; Lester, B.H.; Mercer, J.W. (1983): “An Efficient Finite Element Technique for Modeling Transport in Fractured Porous Media: 1. Single Species Transport”, Water Resources Research, Vol 19, No 3, pp 841–954.

    Article  Google Scholar 

  5. Karasaki, K. (1987): “A new Advection-Dispersion code for Calculating Transport in Fracture Networks”, Earth Science Division Annual Report 1986, Lawrence Berkeley Laboratory Report LBL-22090, pp 55-57.

    Google Scholar 

  6. Long, J.C.S.; Remer, J.S.; Wilson, C.R.; Witherspoon, P.A. (1982): “Porous Media Equivalents for Networks of Discontinous Fractures”, Water Resources Research, Vol 18, No 3, pp 645–658.

    Article  Google Scholar 

  7. Long, J.C.S.; Billaux, D.M. (1987): “From Field Data to Fracture Network Modeling: An Example Incorporating Spatial Structure”, Water Resources Research, Vol 23, No 7, pp 1201–1216.

    Article  Google Scholar 

  8. Neretnieks, I.; Rasmuson, A. (1984): “An Approach to Modelling Radionuclide Migration in Medium with Strongly Varying Velocity and Block Sizes Along the Flow Path”, Water Resources Research, VOL 20, No 12, pp 1823–1836.

    Article  Google Scholar 

  9. Neuman, S.P. (1984): “Adaptive Eulerian-Lagrangian Finite Element Method for Advection-Dispersion”, Int. Journal for Numerical Methods in Engineering, Vol 20, pp 321–337.

    Article  MATH  Google Scholar 

  10. Pruess, K.; Karasaki, K. (1982): “Proximity Functions for Modeling Fluid and Heat Flow in Reservoirs with Stochastic Fracture Distribution”, Proceedings Eighth Workshop Geothermal Reservoir Engineering, Stanford University, pp 219-224.

    Google Scholar 

  11. Sudicky, E.A.; Frind, E.O. (1982): “Contaminant Transport in Fractured Porous Media: Analytical Solution for a System of Parallel Fractures”, Water Resources Research, Vol 18, No 6, pp 1634–1642.

    Article  Google Scholar 

  12. Tang, D.; Frind, E.O.; Sudicky, E.A. (1981): “Contaminant Transport in Fractured Porous Media: Analytical Solution for a Single Fracture”, Water Resources Research, Vol 17, No 3, pp 555–564.

    Article  Google Scholar 

  13. Warren, J. E.; Root, P.J. (1963): “The Behavior of Naturally Fractured Reservoirs”, Soc. Petrol. Eng. J., Vol 3, pp 245–255.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rainer Helmig Willi Jäger Wolfgang Kinzelbach Peter Knabner Gabriel Wittum

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Jansen, D., Birkhölzer, J., Köngeter, J. (1997). Dual-Porosity Modelling of Contaminant Transport in Fractured Porous Formations: the Effect of Spatial Variations of Matrix Block Properties. In: Helmig, R., Jäger, W., Kinzelbach, W., Knabner, P., Wittum, G. (eds) Modeling and Computation in Environmental Sciences. Notes on Numerical Fluid Mechanics (NNFM), vol 59. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-89565-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89565-3_19

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-89567-7

  • Online ISBN: 978-3-322-89565-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics