Skip to main content

Ein Abriß der Aeroelastizität

  • Chapter
Computerdynamik der Tragwerke

Zusammenfassung

Wir sind nun beim letzten Kapitel des dritten und abschließenden Bandes dieses Werkes angelangt. Nachdem wir über 35 Jahre hinweg das Studium der Luft- und Raumfahrttechnik an zwei Universitäten aufgebaut haben, betrachten wir es als eine konsequente Pflichtübung, aber auch als einen sentimentalen Epilog, in diesem letzten Kapitel auf ein ausgesprochen luftfahrtspezifisches Gebiet, das des Flatterns, einzugehen. Flattern stellt ein eigenartiges Phänomen des Zusammenwirkens der nichtkonservativen Luftkräfte mit der elastischen Struktur dar, das sowohl in statischer wie in dynamischer Hinsicht wirksam werden und im Grenzfall zu einer Katastrophe für das Flugzeug führen kann. In vorliegender Darstellung werden wir die aerodynamischen Kräfte, die wieder in Matrizenform angeordnet werden, als gegeben ansehen müssen, da unser Werk hauptsächlich auf die Struktur ausgerichtet ist.

Verfasser: John Argyris, Joachim Bühlmeier “῎Eπεα. πτερόεντα” “Geflügelte Worte” Homer, Ilias & Odyssee “Mετὰ σωφροσύνας οἴακι πειθοῦς” “We should steer with the rudder of self-control” Cercidas, Meliambs., iii, 1.15

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 26

  1. Y. C. Fung, The theory of aeroelasticity (John Wiley & Sons, London, 1955).

    Google Scholar 

  2. K. Oswatitsch; Gasdynamik (Springer-Verlag, 1952).

    Book  MATH  Google Scholar 

  3. I.H. Abbott, A. E. Doenhoff; Theory of wing sections (Dover Publications, New York, 1959).

    Google Scholar 

  4. R. L. Bisplinghoff, H. Ashley; Principles of aeroelasticity (Dover Publications, New York, 1975).

    Google Scholar 

  5. E. H. Dowell; Amodern course in aeroelasticity (Sijthoff and Noordhoff, Alphen aan den Rijn, 1978).

    MATH  Google Scholar 

  6. A. R. Collar; The expanding domain of aeroelasticity, J. Roy. Aer. Soc. 51 (1949) 613–636.

    Google Scholar 

  7. J. Argyris, P. C. Dunne; The general theory of cylindrical and conical tubes under torsion and bending loads, single and many-cell tubes of arbitrary cross-section, etc.

    Google Scholar 

  8. J. Argyris, P. C. Dunne; Parts I–IV. Orthogonal self-equilibrating end load systems. The tube under arbitrary torque. J. Roy. Aer. Soc. 49 (1947) 199–269.

    Google Scholar 

  9. J. Argyris, P. C. Dunne Part V. General analysis of arbitrary loading (bending and torsion), J. Roy. Aer. Soc. 49 (1947) 757–784, 884–930.

    Google Scholar 

  10. J. Argyris, P. C. DunnePart VI. Cut-outs. Open tubes with finite or zero St. Venant torsional stiffness. Series of joined tubes, J. Roy. Aer. Soc. 51 (1949) 461 – 483, 588–620.

    Google Scholar 

  11. W. Just; Statische Längsstabilität und Längssteuerung (Verlag Flugtechnik, Stuttgart, 1959).

    Google Scholar 

  12. H. Stümke; Grundzüge der Flugmechanik und Ballistik (Vieweg, Braunschweig, 1969).

    Book  Google Scholar 

  13. J. Argyris, J. St. Doltsinis, H. Fischer, H. Wüstenberg; Tαˋ π άνταῥϵιί, Fenomech 84, Comp. Meth. Appl. Mech. Eng. 51 (1985) 289–362.

    Article  MATH  Google Scholar 

  14. H. W. Försching; Grundlagen der Aeroelastik (Springer, Berlin, 1974).

    Book  MATH  Google Scholar 

  15. H. G. Natke, O. Mahrenholtz; Aeroelastische Probleme außerhalb der Luft- und Raumfahrt, Mitteilung des Curt-Risch-Institutes der Technischen Universität Hannover, Band I (1978).

    Google Scholar 

  16. H. Schlichting, E. Truckenbrodt; Aerodynamik des Flugzeugs, Teil I (Springer, Berlin, 1967).

    Book  Google Scholar 

  17. E. G. Broadbent; The elementary theory of aeroelasticity (Bunhill Publications, Holborn, 1956).

    Google Scholar 

  18. J. S. Przemieniecki; Theory of structural analysis (McGraw-Hill Book Comp., New York, 1968).

    MATH  Google Scholar 

  19. O. C. Zienkiewicz, The finite element method (third expanded and revised edition) (McGraw-Hill Book Comp., UK, 1977).

    Google Scholar 

  20. D. Althaus, F. X. Wortmann; Stuttgarter Profilkatalog I, Meßergebnisse aus dem Laminarwindkanal des Instituts für Aerodynamik und Gasdynamik der Universität Stuttgart (Vieweg, Braunschweig, 1981).

    Google Scholar 

  21. J. H. WilkinsonThe algebraic eigenvalue problem (Clarendon Press, Oxford, 1965).

    MATH  Google Scholar 

  22. H. G. Natke, E. Dellinger; Funktionsanalytische Behandlung der Flattergleichung unter Verwendung des Newton-Verfahrens, Z. Flugwiss. 20 (1972) 300–306.

    MATH  Google Scholar 

  23. J. H. Wilkinson, C. Reinsch; Handbook for automatic computation, Vol. 2: Linear algebra (Springer, Berlin, 1971).

    Book  MATH  Google Scholar 

  24. Th. Theodorsen; General theory of aerodynamic instability and the mechanism of flutter, NACA Report No. 496 (1935).

    Google Scholar 

  25. P. J. Eberlein; Solution to the complex eigenproblem by a norm reducing Jacobi-type method, Num. Math. 14 (1970) 232–245.

    Article  MathSciNet  MATH  Google Scholar 

  26. K. A. Braun, et al.; Some hypermatrix algorithms in linear algebra, Lecture notes in economics and mathematical systems, in: Computing Methods in Applied Sciences and Engineering, 134, Springer, Berlin (1976).

    Google Scholar 

  27. K. A. Braun; Spektralanalyse großer, linear elastischer, allgemein gedämpfter Schwingungsprobleme, Dissertation, Universität Stuttgart (1979).

    Google Scholar 

  28. K.A. Braun, Th. L. Johnsen; Hypermatrix generalization of the Jacobi- and Eberlein-method for computing eigenvalues and eigenvectors of Hermitean or non-Hermitean matrices, Comp. Meths. Appl. Mech. Eng. 4 (1974) 1–18.

    Article  MATH  Google Scholar 

  29. H. G. Küssner; Allgemeine Tragflächentheorie, Luftfahrtforschung 17 (1940) 370–378.

    MathSciNet  Google Scholar 

  30. C. E. Watkins, H. L. Runyan, D. S. Woolston; On the kernel function of the integral equation relating the lift and downwash distributions of oscillating wings in subsonic flow, NACA Rep. 1234(1955).

    Google Scholar 

  31. C. E. Watkins, D. S. Woolston, H. J. Cunningham; A systematic kernel function procedure for determining aerodynamic forces on oscillating or steady finite wings at subsonic speeds, NASA Rep. R-48 (1959).

    Google Scholar 

  32. V. J. E. Stark; A method for solving the subsonic problem of the oscillating finite wing with the aid of high-speed digital computers, SAAB Aircraft Company, Linköping, Report TN41 (1958).

    Google Scholar 

  33. B. Laschka; Zur Theorie der harmonisch schwingenden tragenden Fläche bei Unterschallanströmung, Z. f. Flugwiss. 11 (1963) 265–292.

    Google Scholar 

  34. H. G. Natke; Bemerkungen zu der angenäherten Lösung des klassischen Flatterproblems, Z. f. Flugwiss. 15 (1967) 425–431.

    Google Scholar 

  35. H. J. Hassig; An approximate true damping solution of the flutter equation by determinant iteration, J. Aircraft 8 (1971) 885–889.

    Article  Google Scholar 

  36. V. J. E. Stark; Aerodynamic coefficients for decaying oscillations and for solution of general equations, Saab-Scania Report FKLF-0–82 (1985).

    Google Scholar 

  37. H. Wittmeyer; Berechnung subkritischer Eigenfrequenzen und Dämpfungen bei einer Flatteruntersuchung, Z. f. Flugwiss. Weltraumforsch. 7 (1983) 331–334.

    MATH  Google Scholar 

  38. H. Wittmeyer; Zum Nachweis der Flattersicherheit von Flugzeugen, Bericht F85/1, CRI-K-2/84 (Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover) (März 1985).

    Google Scholar 

  39. R. Courant, D. Hubert; Methoden der mathematischen Physik, Bd. I, 3. Auflage (Springer, Berlin, 1968) 26–29.

    Book  Google Scholar 

  40. J. W. Edwards, H Ashley, J. V. Breakwell; Unsteady aerodynamic modelling for arbitrary motions, AIAA Paper 77–451 (1977).

    Google Scholar 

  41. E. E. Simodynes; Gradient optimization of structural weight for specified flutter speed, J. Aircraft 11 (1974) 143–147.

    Article  Google Scholar 

  42. K. Wilkinson, J. Markowitz, E. Lerner, D. George; Application of the flutter and strength optimization program (FASTOP) to the sizing of metallic and composite lifting-surface structures, AIAA, ASME, SAE 17th Structures, Structural Dynamics, and Materials Conference, Pennsylvania (May 1976) 463–472.

    Google Scholar 

  43. S. S. Rao; Optimization of complex structures to satisfy static, dynamic and aeroelastic requirements, Int. J. Num. Meth. Eng. 8 (1973) 249–269.

    Article  Google Scholar 

  44. H. Wittmeyer; Änderung des Standschwingversuchs beim Erstarrenlassen einiger Freiheitsgrade, Z. f. Flugwiss. 21 (1973) 213–215.

    Google Scholar 

  45. H. Wittmeyer; Flattergleichungen mit Berücksichtigung einer Servosteuerung und eines Flugreglers, Z. f. Flugwiss. 22 (1974) 37–40.

    Google Scholar 

  46. A. D. N. Smith; Flutter of powered controls and of all-moving tailp lanes, AG ARD manual on aeroelasticity 5, Chapter 4.

    Google Scholar 

  47. R. T. Haftka; Optimum control of structures, NATO/NASA/NSF/USAF, Advanced Study Institute, Computer Aided Optimal Design, I, Troia, Portugal, (1986) 299–311.

    Google Scholar 

  48. N. S. Khot; Minimum weight and optimal control design of space structures, NATO/NASA/ NSF/USAF, Advanced Study Institute, Computer Aided Optimal Design, I, Troia, Portugal, (1986) 355–370.

    Google Scholar 

  49. M. J. Turner; Optimization of structures to satisfy flutter requirements, AIAA J. 7 (1969) 945–951.

    Google Scholar 

  50. C. Fleury, M. Geradin; Optimality criteria and mathematical programming in structural weight optimization, Comp, and Struct. 8 (1978) 7–17.

    Article  MATH  Google Scholar 

  51. R. H. Gallagher, O. C. Zienkiewicz, eds.; Optimum structural design, theory and applications (Wiley, New York, 1977).

    Google Scholar 

  52. W. H. Greene, J. Sobieszczanski-Sobieski; Minimum mass sizing of a large low-aspect ration airframe for flutter-free performance, J. Aircraft 19 (1982) 228–234.

    Article  Google Scholar 

  53. L. Berke; Convergence behaviour of iterative resizing procedures based on optimality criteria, Air Force Flight Dynamics Laboratory, Technical Memorandum 72–1-FBR, (1971).

    Google Scholar 

  54. R. F. O’Connell, N. A. Radovcich, H. J. Hassig; Structural optimization with flutter speed constraints using maximized step size, J. Aircraft 14 (1977) 85–89.

    Google Scholar 

  55. C. S. Rudisill, K. G. Bhatia; Optimization of complex structures to satisfy flutter requirements, AIAA J. 9 (1971) 1487–1491.

    Article  Google Scholar 

  56. L. B. Gwin, R. F. Taylor; A general method for flutter optimization, AIAA J. 11 (1973) 1613–1617.

    Article  MATH  Google Scholar 

  57. H. Wittmeyer; Influence of changes in the mass and stiffness matrix on the natural frequency and damping rate of an airplane in flight, SAAB-SCANIA-Report 6Cla (1986).

    Google Scholar 

  58. C. S. Ventres, E. H. Dowell; Comparison of theory and experiment for nonlinear flutter of loaded plates, AIAA J. 8 (1970) 2022–2030.

    Article  MATH  Google Scholar 

  59. G. Gerard; Minimum weight analysis of orthotropic plates under compressive loading, J. Aerospace Sciences 27 (1960) 21–26.

    Article  MATH  Google Scholar 

  60. R. Destuynder, H. Hönlinger; Multi-control system in unsteady aerodynamics using spoilers, AIAA/ASME/ASCE/AHS, 28th Structures, Structural Dynamics and Materials Conference, Monterey (April 1987); also: O.N.E.R.A. T.P. 1987–31.

    Google Scholar 

  61. R. Destuynder; Active control of the buffeting response on a large modern civil airplane configuration in wind tunnel, 2nd International Symposium on Aeroelasticity and Structural Dynamics, Aachen (April 1985); also: O.N.E.R.A. T.P. 1985–26.

    Google Scholar 

  62. O. Sensburg, H. Hönlinger, T. E. Noll, L. J. Huttsell;Active flutter suppression on an F-4F aircraft, J. Aircraft 19 (1982) 354–359.

    Article  Google Scholar 

  63. M. G. Farmer, P. W. Hanson;Comparison of supercritical and conventional wing, AIAA/ASME/SAE 17th Structures, Structural Dynamics, and Materials Conference, Pennsylvania (May 1976)608–614.

    Google Scholar 

  64. H G. Klug;Aktive Steuerelemente am transsonischen Flügel des Airbus A300, 2. BMFT Statusseminar, Hamburg (1980).

    Google Scholar 

  65. W. D. Hayes;On hypersonic simliitude, Quart. Appl. Math. 5 (1947) 105–106.

    MathSciNet  Google Scholar 

  66. M. J. Lighthill;Oscillating airfoils at high Mach number, Journal of the Aeron. Sciences, 20(1953)402–406.

    MathSciNet  MATH  Google Scholar 

  67. A. R. Collar;Resistance derivatives of flutter theory. Part II: Results for supersonic speeds, Aeronautical Research Council, R. & M. 2139 (1944).

    Google Scholar 

  68. G. Temple, H.A. Jahn;Flutter at supersonic speeds: Derivative coefficients for a thin aerofoil at zero incidence, Aeronautical Research Council, R. & M. 2140 (1945).

    Google Scholar 

  69. H. Ashley, G. Zartarian;Piston-theory — A new aerodynamic tool for the aeroelastician, Journal of the Aeron. Sciences, 23 (1956) 1109–1118.

    MathSciNet  Google Scholar 

  70. I. E. Garrick, S. L. Rubinow;Flutter and oscillating Air Force calculations for an airfoil in a two-dimensional supersonic flow, NACA TR 846, (1946).

    Google Scholar 

  71. M.D. Olson;On applying finite elements to panel flutter, Aero. Rep. LR-476, N.R.C., Ottawa Ca (1967).

    Google Scholar 

  72. E. H. Dowell;Aeroelasticity of plates and shells (Noordhoff, Leyden, 1975).

    MATH  Google Scholar 

  73. M. D. Olson;Finite elements applied to panel flutter, AIAA J. 5 (1967) 2267–2270.

    Article  Google Scholar 

  74. Kari Appa, B. R. Somashekar;Application of matrix displacement methods in the study of panel flutter, AIAA J. 7 (1969) 50–53.

    Article  Google Scholar 

  75. L. Morino;A perturbation method for treating nonlinear panel flutter problems, AIAA J. 7(1969)405–411.

    Article  MATH  Google Scholar 

  76. M. D. Olson;Some flutter solutions using finite elements, AIAA J. 8 (1970) 747–752.

    Article  Google Scholar 

  77. Kari Appa, B. R. Somashekar;Flutter of skew panels by the matrix displacement approach, Aero. J. Roy. Aero. Soc, 74 (1970) 672–675.

    Google Scholar 

  78. Kari Appa, B. R. Somashekar, C. G. Shah;Discrete element approach to flutter of skew panels with in-plane forces under yawed supersonic flow, AIAA J. 8 (1970) 2017–2022.

    Article  Google Scholar 

  79. F. E. Eastep, S. C. Mcintosh Jr.;Analysis of nonlinear panel flutter and response under random exitation or nonlinear aerodynamic loading, AIAA J. 9 (1971) 411–418.

    Article  MATH  Google Scholar 

  80. G. Sander, C. Bon, M. Geradin;Finite element analysis of supersonic panel flutter, Int. J. Num. Meth. Eng. 7 (1973) 379–394.

    Article  MATH  Google Scholar 

  81. J. N. Rosettos, P. Tong;Finite element analysis of vibration and flutter of cantilever anisotropic plates, J. Appl. Mech. 41 (1974) 1075–1080.

    Article  Google Scholar 

  82. T. Y. Yang;Flutter of flat finite element panels in a supersonic potential flow, AIAA J., 13(1975)1502–1507.

    Article  Google Scholar 

  83. L. Smith, L. Morino;Stability analysis of nonlinear differential autonomous systems with applications to flutter, AIAA J. 14 (1976) 333–341.

    Article  MathSciNet  MATH  Google Scholar 

  84. M. N. Bismarck-Nasr;Finite element method applied to the supersonic flutter of circular cylindrical shells, Int. J. Num. Meth. Eng. 10 (1976) 423–435.

    Article  MATH  Google Scholar 

  85. T. Y. Yang, A. D. Han;Flutter of thermally buckled finite element panels, AIAA J. 14 (1976)975–977.

    Article  Google Scholar 

  86. M. N. Bismarck-Nasr;Finite element methods applied to the flutter of two parallel elastically coupled flat plates, Int. J. Num. Meth. Eng. 11 (1977) 1188–1193.

    Article  MATH  Google Scholar 

  87. T. Y. Yang, S. H. Sung;Finite-element panel flutter in three-dimensional supersonic unsteady potential flow, AIAA J. 15 (1977) 1677–1683.

    Article  MATH  Google Scholar 

  88. C. Mei;A finite element approach for nonlinear panel flutter, AIAA J. 15 (1977) 1107 – 1110.

    Article  Google Scholar 

  89. M. N. Bismarck-Nasr, H. R. Costa Savio;Finite-element solution of the supersonic flutter of conical shells, AIAA J. 17(1979)1148–1150.

    Article  Google Scholar 

  90. K. S. Rao, G. V. Rao;Large amplitude supersonic flutter of panels with ends elastically restrained against rotation, Comp, and Struct. 11 (1980) 197–201.

    Article  MATH  Google Scholar 

  91. T. Y. Yang, A. D. Han;Buckled plate vibrations and large amplitude vibrations using high-order triangular elements, AIAA J. 21 (1983) 758–766.

    Article  MATH  Google Scholar 

  92. J. Argyris, M. Haase, G. A. Malejannakis;Natural geometry of surfaces with specific reference to the matrix displacement analysis of shells. I, II and III, ISD Rep. No. 134, (1973); also: Proceedings of K. Nederlandse Akademie van Wetenschappen, Series B, No. 5 (1973) 361 – 410.

    MATH  Google Scholar 

  93. J. Argyris, K. E. Buck;A sequel to technical note 14 on the TUBA family of plate elements, The Aero. J. Roy. Aer. Soc. 72 (1968) 977–983.

    Google Scholar 

  94. A. D. Han, T. Y. Yang;Nonlinear panel flutter using high-order triangular finite elements, AIAA J. 21 (1983) 1453–1461.

    Article  MATH  Google Scholar 

  95. E. H. Dowell;Flutter of a buckled plate as an example of chaotic motion of a deterministic autonomous system, J. Sound Vibr. 85 (1982) 333–344.

    Article  MathSciNet  Google Scholar 

  96. E. H Dowell;Nonlinear oscillations of a fluttering plate, part I, AIAA J. 4 (1966) 1267–1275.

    Article  Google Scholar 

  97. E. H Dowell;Nonlinear oscillations of a fluttering plate, part II, AIAA J. 5 (1967) 1856–1862.

    Article  Google Scholar 

  98. E. H. Dowell;Nonlinear aeroelasticity, in: New approaches to nonlinear problems in dynamics, ed. P. J. Holmes, SIAM, Philadelphia, (1980) 147–172b.

    Google Scholar 

  99. C.-C Kuo, L. Morino, J. Dugundji;Perturbation and harmonic balance methods for nonlinear panel flutter, AIAA J. 10 (1972) 1479–1484.

    Article  Google Scholar 

  100. G. R. Cowper, E. Kosko, G. M. Lindberg, M. D. Olson;Static and dynamic applications of a high-precision triangular plate bending element, AIAA J. 7 (1969) 1957–1965.

    Article  Google Scholar 

  101. P. J. Holmes;Bifurcations to divergence and flutter in flow-induced oscillations: a finite dimensional analysis, J. Sound Vibr. 53 (1977) 471–503.

    Article  MATH  Google Scholar 

  102. P. J. Holmes, J. Marsden;Bifurcations to divergence and flutter in flow-induced oscillations: an infinite dimensional analysis, Automatica 14 (1978) 367–384.

    Article  MathSciNet  MATH  Google Scholar 

  103. W. P. Rodden, J. P. Giesing, T. P. Kaiman;New developments and applications of the subsonic doublet-lattice method for nonplanar configurations, AGARD Symposium on unsteady aerodynamics for aeroelastic analyses of interfering surfaces, AGARD CP-80–71 (1970).

    Google Scholar 

  104. W. P. Jones, Kari Appa;Unsteady supersonic aerodynamic theory for interfering surfaces by the method of potential gradient, AIAA J. 15 (1977) 59–65.

    Article  MATH  Google Scholar 

  105. R. L. Harder, W. P. Rodden;Kernel function for nonplanar oscillating surfaces in supersonic flow, J. Aircraft 8 (1971) 677–679.

    Article  Google Scholar 

  106. W. P. Jones;Supersonic theory for oscillating wings of any planform, British ARC, R. and M. 2655(1948).

    Google Scholar 

  107. Kari Appa;A constant pressure panel method for supersonic unsteady airload analysis, J. Aircraft 24 (1987) to be published.

    Google Scholar 

  108. Kari Appa, M. Smith;Evaluation of the constant pressure panel method (CPM) for unsteady supersonic air load prediction, Northrop Corporation, Aircraft Division, California (1987).

    Google Scholar 

  109. L. Morino;A general theory of unsteady compressible potential aerodynamics, NASA CR-2464 (1974).

    Google Scholar 

  110. L. Morino, L. Tz. Chen;Indicial compressible aerodynamics around complex aircraft configurations, in: NASA SP-347 (1975) 1067–1110.

    Google Scholar 

  111. L. Morino;Steady, oscillatory and unsteady subsonic and supersonic aerodynamics -production version, I Theoretical manual, NASA CR-159130 (1980).

    Google Scholar 

  112. E. Yates Jr., W. Whitlow Jr.;Development of computational methods for unsteady aerodynamics at the NASA Langley Research Center, AGARD-R-749 (1987).

    Google Scholar 

  113. B. Kirchgäßner;Linearisierte aeroelastische Analyse einer Windturbine mit Zweiblattrotor, Dissertation, Universität Stuttgart (1986).

    Google Scholar 

  114. J. Argyris, P. C. Dunne, T. Angelopoulos, B. Bichat;Linear and non-linear oscillations in mechanics, in: Proceedings of the 9th Congress of the International Council of the Aeronautical Sciences (ICAS), Haifa, Israel, II, eds. R. R. Dexter, J. Singer (August 1974) 575–584.

    Google Scholar 

  115. M. Roseau;Vibrations nonlinéaires et théorie de la stabilité (Springer, Berlin, 1966).

    Google Scholar 

  116. A. Kußmann;Überblick über verschiedene Modelle zur Berechnung der Rotordurchströmung, DLR-Mitteilung 70–19 (1970).

    Google Scholar 

  117. R. D. Preuss, E. O. Suciu, L. Morino;Unsteady potential aerodynamics of rotors with applications to horizontal-axis windmills, AIAA J., 18 (1980) 385–393.

    Article  MATH  Google Scholar 

  118. O. de Vries;Fluid dynamic aspects of wind energy conversion, AGARDograph 243 (1979).

    Google Scholar 

  119. F. Sisto;Stall-flutter in cascades; Journal of the Aeron. Sciences 20 (1953) 598–604.

    Google Scholar 

  120. P. V. K. Perumal, F. Sisto;Lift and moment prediction for an oscillating airfoil with a moving separation point, J. of Eng. for Power 96 (1974) 372–378.

    Article  Google Scholar 

  121. S. Kobayashi;Two-dimensional panel flutter, 1. simply supported panel; Trans. Japan Society Aeronautical Space Sciences 5 (1962) 90–102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Argyris, J., Mlejnek, HP. (1997). Ein Abriß der Aeroelastizität. In: Computerdynamik der Tragwerke. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-89564-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89564-6_13

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-06916-2

  • Online ISBN: 978-3-322-89564-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics