Skip to main content

Aspekte zur nichtlinearen Tragwerksdynamik

  • Chapter
Book cover Computerdynamik der Tragwerke

Zusammenfassung

Wie sich aus den vorhergehenden Kapiteln ergibt, kann ein breites Feld der Probleme in der Dynamik unter Einsatz linearisierter Formulierungen erfolgreich und mit befriedigender Genauigkeit auch wirtschaftlich gelöst werden. Das dafür verfügbare Handwerkszeug kann als komplett und ausgereift gelten, so daß Berechnungen auf diesem Gebiet heute zum Standard der Ingenieurpraxis gehören. Neben zahlreichen Problemen, die mit Hilfe der Linearisierungstechnik bewältigt werden können, verbleibt ein Rest, der mit solchen Vereinfachungen nicht adäquat erfaßt werden kann. Die Faszination des Studiums dieser nichtlinearen Aufgaben liegt im Erscheinen neuer und unerwarteter Phänomene, die im linearen Lösungskreis nicht einmal andeutungsweise auftreten. Dabei ist es im Gegensatz zur linearen Lösungstechnik selbst in einfacheren Fällen in der Regel nicht mehr möglich, allgemeine Lösungen zu finden. Nichtlineare Dynamik ist deshalb a priori eine Domäne der Approximationsverfahren.

“Complicated monsters, head and tail, Scorpion and asp, and Amphisbaena dire, Cerases horned, Hydrus, and Ellops drear.“

John Milton, Paradise lost

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu Kapitel 24

  1. K. Klotter; Nonlinear vibrations, in: Handbook of engineering mechanics, ed. W. Flügge (McGraw-Hill, New York, 1962).

    Google Scholar 

  2. J. J. Stoker; Nonlinear vibrations in mechanical and electrical systems (Interscience, New York, 1950).

    MATH  Google Scholar 

  3. Ch. Hayashi; Nonlinear oscillations in physical systems (McGraw-Hill, New York, 1964).

    MATH  Google Scholar 

  4. P. Hagedorn; Non-linear oscillations (Clarendon Press, Oxford, 1981).

    Google Scholar 

  5. R. E. Mickens; An introduction to nonlinear oscillations (Cambridge University Press, Cambridge, 1981).

    MATH  Google Scholar 

  6. J. M. T. Thompson, H. B. Stewart; Nonlinear dynamics and chaos, geometrical methods for engineers and scientists (John Wiley and Sons, Chichester, 1986).

    MATH  Google Scholar 

  7. E. Kreuzer; Numerische Untersuchung nichtlinearer dynamischer Systeme (Springer, 1987).

    Book  MATH  Google Scholar 

  8. A. Kunick, W. H. Steeb; Chaos in dynamischen Systemen (BI Wissenschaftsverlag, Mannheim, Wien, Zürich, 1986).

    MATH  Google Scholar 

  9. K. Straub, G. Vallianos; ASKA Part II, linear dynamics, earthquake spectral response analysis, ASKA UM 221, ISD Stuttgart (1978).

    Google Scholar 

  10. J. W. Miles, W. T Thompson; Statistical concepts in vibration, in: Shock and vibration handbook, ed. by Harris and Crede (McGraw-Hill, New York, 1961).

    Google Scholar 

  11. L. Meirovitch; Elements in vibration analysis (McGraw-Hill, New York, 1975).

    Google Scholar 

  12. Y. Ueda; Explosion of strange attractors exhibited by Duffing’s equation, in: Nonlinear dynamics, ed. by R. H. G. Helleman, New York Academy of Sciences, New York (1980) 422–434.

    Google Scholar 

  13. W. C. Hurty, M.F. Rubinstein; Dynamics of structures (Prentice Hall, Englewood Cliffs, 1964).

    Google Scholar 

  14. R. W. Clough, J. Penzien; Dynamics of structures (McGraw-Hill, New York, 1975).

    MATH  Google Scholar 

  15. Y. Ueda; Steady motions exhibited by Duffing’s equation: a picture book of regular and chaotic motions, in: New approaches to nonlinear problems in dynamics, ed. by P. J. Holmes, SIAM, Philadelphia (1980) 311–322.

    Google Scholar 

  16. H. Fujii; Finite element schemes: stability and convergence, in: Advances in computational methods in structural mechanics and design, ed. by J. T. Oden et al., University of Alabama Press (1972) 201–218.

    Google Scholar 

  17. R. D. Krieg, S. W. Key; Transient shell response by numerical time integration, Int. J. Num. Meth. Eng., Vol. 17 (1973) 273–286.

    Article  Google Scholar 

  18. T Belytschko, R. Mullen; Explicit integration of structural problems, in: Finite elements in nonlinear mechanics, Vol. 2, Tapir (1977) 697–720.

    Google Scholar 

  19. P. J. van der Houwen; Construction of integration formulas for initial value problems (North-Holland, Amsterdam, 1977).

    MATH  Google Scholar 

  20. C. C. Fu; A method for the numerical integration of the equations of motion arising from a finite element analysis, J. Appl. Mech. (1970) 599–605.

    Google Scholar 

  21. D. M. Trujillo; The direct numerical integration of linear matrix differential equations using Padé approximations, Int. J. Num. Meth. Eng., 9 (1975) 259–270.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Argyris, P. C. Dunne, T. Angelopoulos; Non-linear oscillations using the finite element technique, Comp. Meth. Appl. Mech. Eng., Vol. 2 (1973) 203–250.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Farhoomand; Non-linear dynamic stress analysis of two-dimensional solids, Ph. D. Thesis, University of California, Berkeley (1970).

    Google Scholar 

  24. R. W. Clough, E. L. Wilson; Dynamic finite element analysis of arbitrary thin shells, Computers and Structures 1 (1972) 33–35.

    Article  Google Scholar 

  25. E. L. Wilson, I. Farhoomand, K. J. Bathe; Nonlinear dynamic analysis of complex structures, Earthquake Eng. and Struct. Dyn., Vol. 1 (1973) 241–252.

    Article  Google Scholar 

  26. C. Petersen; Abgespannte Maste und Schornsteine, Statik und Dynamik (Wilhelm Ernst und Sohn Verlag, Berlin, 1970).

    Google Scholar 

  27. J. Argyris, P. C. Dunne; Some Contributions to nonlinear solid mechanics, Colloque IRIA, Versailles, 1973, Springer, Berlin (1974).

    Google Scholar 

  28. I. Newton; Principia: Book III, General Scholium.

    Google Scholar 

  29. I. Newton; The System of the World, § 26.

    Google Scholar 

  30. T. J. R. Hughes; Stability, convergence and growth and decay of energy of the average acceleration method in nonlinear structural dynamics, Computers and Structures 6 (1976) 313–324.

    Article  MathSciNet  MATH  Google Scholar 

  31. T. Belytschko, D. F. Schoeberle; On the unconditional stability of an implicit algorithm for nonlinear structural dynamics, J. Appl. Mech. 42 (1975) 865–869.

    Article  Google Scholar 

  32. E. Haug, A. L. de Rouvray, Q.S. Nguyen; An improved energy conserving implicit time integration algorithm for nonlinear dynamic structural analysis, 4th Int. Conf. SMIRT, San Francisco, Aug. (1977) Paper M5/3.

    Google Scholar 

  33. T. J. R. Hughes, T. K. Caughy, W. K. Liu; Finite element methods for nonlinear elasto-dynamics which conserve energy, J. Appl. Mech. 45 (1978) 366–370.

    Article  MATH  Google Scholar 

  34. T. J. R. Hughes; Analysis of transient algorithms with particular reference to stability behaviour, in: Computational methods for transient analysis ed. by T. Belytschko and T. J. R. Hughes, North-Holland, Amsterdam (1983).

    Google Scholar 

  35. H. Ziegler; Principles of structural stability (Blaisdell, Waltham/Massachusetts, 1968).

    Google Scholar 

  36. J. Argyris, Sp. Symeonidis; Nonlinear finite element analysis of elastic systems under nonconservative loading — Natural formulation. Part I. Quasistatic problems, Comp. Meth. Appl. Mech. Eng., 26 (1981) 75–123.

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Argyris, K. Straub, Sp. Symeonidis; Nonlinear finite element analysis of elastic systems under nonconservative loading — Natural formulation. Part II. Dynamic problems, Comp. Meth. Appl. Mech. Eng. 28 (1981) 241–258.

    Article  MATH  Google Scholar 

  38. V. V. Bolotin; Nonconservative problems of the theory of elastic stability (Moskau, 1961), English translation (Pergamon Press, New York, 1963).

    MATH  Google Scholar 

  39. H. Ziegler; Linear elastic stability, Z. angew. Math. Physik 4 (1953) 89–121;

    Article  MathSciNet  MATH  Google Scholar 

  40. H. Ziegler; Linear elastic stability, Z. angew. Math. Physik 4 (1953) **168–185.

    Google Scholar 

  41. P. Seide, T. M. M. Jamjoom; Large deformations of circular rings under nonuniform normal pressure, ASME, J. Appl. Mech. 41 (1974) 192–196.

    Article  Google Scholar 

  42. J. Argyris, Sp. Symeonidis; A sequel to: Nonlinear finite element analysis of elastic systems under nonconservative loading — Natural formulation — Part I. Quasistatic problems. Comp. Meth. Appl. Mech. and Eng., 26 (1981) 377–383.

    Article  MathSciNet  MATH  Google Scholar 

  43. S. P. Timoshenko, J. M. Gere; Theory of elastic stability, 2nd ed. (McGraw-Hill, New York, 1961).

    Google Scholar 

  44. M. Como; Lateral buckling of a cantilever subjected to a transverse follower force, Internat. J. Solids and Structures 2 (1966) 515–523.

    Article  Google Scholar 

  45. J. Argyris, K. Straub, Sp. Symeonidis; Static and dynamic stability of nonlinear elastic systems under nonconservative forces. Natural approach, Comp. Meth. Appl. Mech. Eng. 32 (1982) 59–83.

    Article  MathSciNet  MATH  Google Scholar 

  46. M. M. Mai; Zur nichtlinear statischen und dynamischen Berechnung gyroskopischer Schalen- und Balkenstrukturen mit der Finite Elemente Methode, Dissertation, Universität Stuttgart (1985).

    Google Scholar 

  47. R. M. Laurenson; Modal analysis of rotating flexible structures, AIAA J., 14 (1976) 1444–1450.

    Article  Google Scholar 

  48. J. Argyris, P. C. Dunne, T. Angelopoulos; Dynamic response by large step integration, Earthquake Eng. Struct. Dyn., 2 (1973) 185–203.

    Article  MathSciNet  Google Scholar 

  49. J. Argyris, H. A. Balmer, J. St. Doltsinis, A. Kurz; Computer simulation of crash phenomena, Int. J. Num. Meth. Eng., 22 (1986) 497–519.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Argyris, J., Mlejnek, HP. (1997). Aspekte zur nichtlinearen Tragwerksdynamik. In: Computerdynamik der Tragwerke. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-89564-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89564-6_11

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-06916-2

  • Online ISBN: 978-3-322-89564-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics