Skip to main content

Recovering the Orientation Distribution Function with Maximum Entropy from Experimental Pole Distribution Functions

  • Chapter
  • 120 Accesses

Part of the book series: Theory and Practice of Applied Geophysics ((THPAG))

Abstract

Anisotropic behavior of singlephase polycrystalline material is controlled by its constituent crystal grains and their spatial orientation within the specimen. More specifically, a macroscopic physical property in a given direction is the mean value of the corresponding property of the individual crystallites with respect to the statistical distribution of their orientations. Thus, the orientation distribution is a mathematical approach of describing and quantifying anisotropy. Unfortunately, the orientation distribution function (odf) can generally not be measured directly. Therefore it is common practice to measure pole distribution functions (pdfs) of several distinct reflexions in X-ray or neutron diffraction experiments with a texture goniometer. Recovering the odf from its corresponding pdfs is then the crucial prerequisite of quantitative texture analysis. This mathematical problem of texture goniometry is essentially a projection problem because the measured pdfs represent integral properties of the specimen along given lines; it may also be addressed as a tomographical problem specified by the crystal and statistical specimen symmetries and the properties of the diffraction experiment. Mathematically it reads as a Fredholm integral equation of the first kind and was conventionally tackled by transform methods. Due to the specifics of the problem these are unable to recover the part of the odf represented by the odd terms of the (infinite) series expansion. In this situation, finite series expansion, or discrete, methods have been developed primarily because they are capable of incorporating additional information, e.g. the non-negativity of the odf to be recovered, as truly constitutive elements of an inversion procedure. This approach leads to a system of linear equations which is large, sparse, structureless, highly (column) rank deficient, and often inconsistent. Its entropy maximizing solution is proposed here because it yields the least presumptive odf with the smallest information content consistent with the experimental data thus avoiding artificial components, especially “ghosts” caused by the specific properties of the diffraction experiment. With respect to the Backus-Gilbert formalism it provides the most safely balanced solution. Therefore, it allows interpretation in geoscientific terms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aczel, J., Daroczy, Z., 1975: On Measures of Information and Their Characterizations. Academic Press, New York.

    Google Scholar 

  2. Aki, K., Richards, P.G., 1980: Quantitative seismology, theory and methods. W.H. Freeman & Comp., San Francisco.

    Google Scholar 

  3. Alekseev, A.S., Erokhin, G.N., 1989: Complex approach to solving inverse problems of geophysics (integral geophysics). This volume.

    Google Scholar 

  4. Artzy, E., Elfving, T., Herman, G.T., 1979: Quadratic optimization for image reconstruction II. Comp. Graphics Image Proc., 11, 242–261

    Article  Google Scholar 

  5. Baker, D.W., Carter, N.L., 1972: Seismic velocity anisotropy calculated for ultramafic minerals and aggregates, in Heard, H.C., Borg, I.Y., Carter, N.L., Raleigh, C.B., (eds.), Flow and fracture of rock- The Griggs Volume, Geophysical Monograph 16, American Geophysical Union, 157–166.

    Google Scholar 

  6. Bakhvalov, N.S., 1977: Numerical Methods. MIR Publishers, Moscow.

    Google Scholar 

  7. Bunge, H.J. (P.R. Morris trans.), 1982: Texture analysis in materials science. Butterworths, London.

    Google Scholar 

  8. Burg, J.P., 1967: Maximum entropy spectral analysis. Proc. 37th Meeting Society of Exploration Geophysicists. reprinted in Childers, D.G. (ed.), 1978, Modern spectrum analysis, Wiley, New York.

    Google Scholar 

  9. Burg, J.P., 1975: Maximum entropy spectral analysis. Ph.D. Thesis, Stanford University.

    Google Scholar 

  10. Censor, Y., 1982: Entropy optimization via entropy projections, in Drenick, W.R.F., Kozin, F., (eds.), System modeling and optimization, Springer Veralg, WBerlin, 450–454.

    Chapter  Google Scholar 

  11. Censor, Y., 1983: Finite series-expansion reconstruction methods. Proc. IEEE, 71, 409–419.

    Article  Google Scholar 

  12. Censor, Y., Segman, J., 1987: On block-iterative entropy maximization. J. Information and Optimization Sciences, 8, 275–291.

    Google Scholar 

  13. Crosson, R.S., Lin, J.W., 1971: Voigt and Reuss prediction of anisotropic elasticity of dunite. J. Geophys. Res., 76, 570–578.

    Article  Google Scholar 

  14. Edward, J.A., Fitelson, M.M., 1973: Notes on maximum-entropy processing. IEEE Trans. Inf. Theory, IT 19, 232–234.

    Article  Google Scholar 

  15. Fountain, D.M., Hurich, C.A., Smithson, S.B., 1984: Seismic reflectivity of mylonite zones in the crust. Geology, 12, 195–198.

    Article  Google Scholar 

  16. Frieden, B.R., 1980: Statistical models for the image restoration problem. Comput.Graphics Image Processing, 12, 40–59.

    Article  Google Scholar 

  17. Gibbs, J.W., 1875-78, Heterogeneous equilibrium. Conn. Academy of Science; reprinted 1928, Longmans, Green & Co, New York; 1961, Dover Publications, New York.

    Google Scholar 

  18. Hale, L.D., Thompson, G.A., 1982: The seismic reflection character of the Mohorovicic discontinuity. J. Geophys. Res., 87, 4625–4635.

    Article  Google Scholar 

  19. Herman, G.T., 1982: Mathematical optimization versus practical performance. A case study based on the luaiimum entropy criterion in image reconstruction. Math. Programming Stud., 20, 96–112.

    Article  Google Scholar 

  20. Herman, G.T., 1985: Application of maximum entropy and Bayesian optimization methods to image reconstruction from projections, in Smith, C.R., Grandy, W.T. jr., (eds.), Maximum entropy and Bayesian methods in inverse problems, D. Reidel Publishing Company, Dordrecht, 319–338.

    Google Scholar 

  21. Jaynes, E.T., 1957: Information theory and statistical mechanics. Phys. Rev., 106, 620–630.

    Article  Google Scholar 

  22. Jaynes, E.T., 1957: Information theory and statistical mechanics II. Phys. Rev., 108, 171–190.

    Article  Google Scholar 

  23. Jaynes, E.T., 1968: Prior probabilities. IEEE Trans. Syst. Sci. Cybern, SSC 4, 227–241.

    Article  Google Scholar 

  24. Jaynes, E.T., 1979: Where do we stand on maximum entropy? in Levine, R.D., Tribus, M., (eds.), The Maximum Entropy Formalism. MIT Press, Cambridge, Mass., 15–118.

    Google Scholar 

  25. Jaynes, E.T., 1982: On the rationale of maximum-entropy methods. Proc. IEEE, 70, 939–952.

    Article  Google Scholar 

  26. Jaynes, E.T., 1983: Papers on probability, statistics, and statistical physics. D. Reidel Publishing Company, Dordrecht.

    Google Scholar 

  27. Jaynes, E.T., 1985: Where do we go from here? in Smith, C.R., Grandy, W.T. jr., (eds.), Maximum entropy and Bayesian methods in inverse problems, D. Reidel Publishing Company, Dordrecht, 21–58.

    Google Scholar 

  28. Jones, T.D., 1985, Nature of seismic reflections from the crystalline basement: COCORP Wind River Line, Wyoming. J. Geophys. Res., 90, 6783–6791.

    Article  Google Scholar 

  29. Jones, T.D., Nur, A., 1982: Seismic velocity and anisotropy in mylonites and the reflectivity ofrdeep crustal faults: Geology, 10, 260–263

    Google Scholar 

  30. Jones, T.D., Nur, A., 1984: The nature of seismic reflections from deep crustal fault zones. J. Geophys. Res., 89, 3153–3171.

    Article  Google Scholar 

  31. Kapur, J.N., 1983: Twenty-five years of maximum-entropy methods. J. Math. Phys. Sci., 17, 103–156.

    Google Scholar 

  32. Katz, A., 1967: Principles of Statistical Mechanics — The Information Theory Approach. Freeman, San Fransisco.

    Google Scholar 

  33. Khinchin, A.I., 1957: Mathematical Foundations of Information Theory. Dover Publications, New York.

    Google Scholar 

  34. Kullback, S., 1959: Information Theory and Statistics. J. Wiley & Sons, New York.

    Google Scholar 

  35. Lent, A., 1976: A convergent algorithm for maximum entropy image restoration, with a medical x-ray application, in Shaw, R., (ed.), Image analysis and evaluation, Society of Photographic Scientists and Engineers, Washington DC, 249–257.

    Google Scholar 

  36. Lent, A., Censor, Y., 1989: The primal-dual algorithm as a constraint-set-manipulation device. Mathematical Programming, to appear.

    Google Scholar 

  37. Mainprice, D., Nicolas, A., 1989: Development of shape and lattice preferred orientations: application to the seismic anisotropy of the lower crust. J. Structural Geol., 11, 175–189.

    Article  Google Scholar 

  38. Matthies, S., 1982: Aktuelle Probleme der quantitativen Texturanalyse. Akademie der Wissenschaften der DDR, Zentralinstitut für Kernforschung, Rossendorf bei Dresden, ZfK-480.

    Google Scholar 

  39. McLaughlin, D.W., 1983: Inverse problems, Proceedings of a symposium in applied mathematics. Amer. Math. Soc., Providence, RI.

    Google Scholar 

  40. Menke, W., 1984: Geophysical Data Analysis. Discrete Inverse Theory. Academic Press, Orlando.

    Google Scholar 

  41. Morris, P.R., 1969: Averaging fourth-rank tensors with weight functions. J. Appl. Phys., 40, 447–448.

    Article  Google Scholar 

  42. Rietsch, E., 1977: The maximum entropy approach to inverse problems. J. Geophys., 42, 489–506.

    Google Scholar 

  43. Rowlinson, J.S., 1970: Probability, information and entropy. Nature, 225, 1196–1198.

    Article  Google Scholar 

  44. Sabatier, P.C., 1989: Three dimensional impedance scattering theory. This volume.

    Google Scholar 

  45. Schaeben, H., 1984: Mathematical modeling of the orientation distribution function by the vector method of quantitative texture analysis, phys. stat. sol.(b), 123, 425–434.

    Google Scholar 

  46. Schaeben, H., 1988: Entropy optimization in texture goniometry I. Methodology, phys. stat. sol.(b), 148, 63–72.

    Article  Google Scholar 

  47. Schaeben, H., Siemes, H., Auerbach, S., 1989, Entropy optimization in texture goniometry II. Practical applications: phys. stat. sol.(b), to appear

    Google Scholar 

  48. Shannon, C.E., 1948: A mathematical theory of communication. Bell System Tech. J., 27, 379–423, 623–656.

    Google Scholar 

  49. Shannon, C.E., Weaver, W., 1949: The mathematical theory of communication. Univ. of Illinois Press, Urbana.

    Google Scholar 

  50. Shaw, R.,(ed.), 1976: Image Analysis and Evaluation. Society of Photographic Scientists and Engineers, Washington, D.C.

    Google Scholar 

  51. Smith, C.R., Grandy, W.T. jr., (eds.), 1985: Maximum entropy and Bayesian methods in inverse problems. D. Reidel Publishing Company, Dordrecht.

    Google Scholar 

  52. Tarantola, A., 1987: Inverse Problem Theory. Elsevier, Amsterdam.

    Google Scholar 

  53. Tikhonov, A.N., Arsenin, V.Y., 1977: Solutions of ill-posed problems. J. Wiley k Sons, New York.

    Google Scholar 

  54. Titterington, D.M., 1985: Common structure of smoothing techniques in statistics. Internat. Statist. Rev., 53, 141–170.

    Article  Google Scholar 

  55. Tolman, R.C., 1938: Principles of Statistical Mechanics. Oxford University Press.

    Google Scholar 

  56. Tribus, M., 1961: Thermostatistics and Thermodynamics. Van Nostrand, Princeton.

    Google Scholar 

  57. Tribus, M., 1979: Thirty years of information theory, in Levine, R.D., Tribus, M., (eds.), The Maximum Entropy Formalism. MIT Press, Cambridge, Mass., 1–14.

    Google Scholar 

  58. Wenk, H.R., (ed.), 1985: Preferred orientation in deformed metals and rocks. An introduction to modern texture analysis. Academic Press, Orlando.

    Google Scholar 

  59. Wenk, H.R., Bunge, H.J., Kallend, J.S., Lücke, K., Matthies, S., Pospiech, J., Van Houtte, P., 1988: Orientation distributions: representation and determination, in Kallend, J.S, Gottstein, G., (eds.), Proceedings ICOTOM8, Santa Fe, NM, USA, Sep 87, The Metallurgical Society, 17–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andreas Vogel Charles O. Ofoegbu Rudolf Gorenflo Bjorn Ursin

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig

About this chapter

Cite this chapter

Schaeben, H. (1990). Recovering the Orientation Distribution Function with Maximum Entropy from Experimental Pole Distribution Functions. In: Vogel, A., Ofoegbu, C.O., Gorenflo, R., Ursin, B. (eds) Geophysical Data Inversion Methods and Applications. Theory and Practice of Applied Geophysics. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-89416-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89416-8_4

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-06396-2

  • Online ISBN: 978-3-322-89416-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics