Skip to main content

Robust Predictors and an Alternative Iteration Scheme for Ill-posed Problems

  • Chapter
Geophysical Data Inversion Methods and Applications

Part of the book series: Theory and Practice of Applied Geophysics ((THPAG))

Abstract

It is well known that Tikhonov’s regularization method for ill-posed problems has a direct correspondence to certain predictors in the context of random effects models. Hence not only the iteration scheme of King/Chillingworth (1979) or E. Schock (1984) can easily be derived in full analogy to the iterated inhomBLIP (Best inhomogeneously LInear Predictor), but also an apparently new scheme is readily developed following the iterated homBLUP (Best homogeneously Linear weakly Unbiased Predictor) approach by B. Schaffrin (1985) which has some relations to a robustified Krige type prediction. The performance of the proposed iteration scheme with particular regard to its convergence properties is shown by an example from geodesy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, A., 1972: Regression and the Moore-Penrose Pseudoinverse. Academic Press, New York.

    Google Scholar 

  • Brackhage, H., 1987: On ill-posed problems and the method of conjugate gradients; in: H.W. Engl/C.W. Groetsch (eds.), Inverse and Ill-Posed Problems. Academic Press, Boston, 165–175.

    Google Scholar 

  • Brill, M. and E. Schock, 1987: Iterative solution of ill-posed problems — a survey; in: A. Vogel (ed.), Model Optimization in Exploration Geophysics. Vieweg, Braunschweig/Wiesbaden, 13–37.

    Google Scholar 

  • Fakeev, A.G., 1981: A class of iterative processes for solving degenerate systems of linear algebraic equations. USSR Comp. Math. Math. Phys. 21 15–22.

    Google Scholar 

  • Groetsch, C.W., 1977: Generalized inverses of linear operators: representation and approximation. Dekker, New York.

    Google Scholar 

  • Hageman, L.A. and D.M. Young, 1981: Applied Iterative Methods. Academic Press, New York.

    Google Scholar 

  • Hestenes, M.R. and E.L. Stiefel, 1952: Methods of conjugate gradients for solving linear systems. Nat. Bur. Stand. J. Res. 49, 409–436.

    Google Scholar 

  • Kammerer, W.J. and M.Z. Nashed, 1971: Steepest descent for singular linear operators with nonclosed range. Applicable Anal. 1, 143–159.

    Article  Google Scholar 

  • Kantorovich, L.V., 1948: Uspechi Mat. Nauk. III, No. 5, 88 ff. (Russian).

    Google Scholar 

  • King, J.T. and D. Chillingworth, 1979: Approximation of generalized inverses by iterated regularization. Numer. Funct. Anal, and Optimiz. 1, 499–513.

    Article  Google Scholar 

  • Kryanev, A.V., 1974: An iterative method for solving incorrectly posed problems. USSR Comp. Math. Math. Phys. 14, 24–35.

    Google Scholar 

  • Landweber, L., 1953: An iteration formula for Fredholm integral equations of the first kind. Amer. J. Math. 73, 615–624.

    Article  Google Scholar 

  • Lardy, L.J., 1975: A series representation for the generalized inverse of a closed linear operator. Atti Accad. Naz. Lincei — Rend. CI. Sci. Fis. Mat. Natur, Ser. VIII, Vol. 58, 152–157.

    Google Scholar 

  • Louis, A.K., 1987: Convergence of the conjugate gradient method for compact operators; in: H.W. Engl/C.W. Groetsch (eds.), Inverse and Ill-Posed Problems, Academic Press, Boston, 177–183.

    Google Scholar 

  • Marshall, A.W. and I. Olkin, 1979: Inequalities — Theory of Majorization and its Applications. Academic Press, New York.

    Google Scholar 

  • Mikhail, E.M. and F. Ackermann, 1976: Observations and Least-Squares. Dun-Donnelley, New York.

    Google Scholar 

  • Moore, E.H., 1920: On the reciprocal of the general algebraic matrix. Bull. Amer. Math. Soc. 26 (1920), 394f. (Abstract).

    Google Scholar 

  • Nashed, M.Z., 1976: Perturbations and approximations for generalized inverses and linear operator equations; in: M.Z. Nashed (ed.), Generalized Inverses and Applications. Academic Press, New York, 325–396.

    Google Scholar 

  • Penrose, R., 1955: A generalized inverse for matrices. Proc. Cambridge Phil. Soc. 51 (1955), 406–413,

    Article  Google Scholar 

  • Rao, C.R., 1971: Unified theory of linear estimation. Sankhyä A-33 (1971), 371–394, and A-34 (1972), 194 (Corrigendum).

    Google Scholar 

  • Rao, C.R., 1972: Unified theory of least-squares. Comm. Statist. 1, 1–8.

    Google Scholar 

  • Riley, J.D., 1955: Solving systems of linear equations with a positive-definite, symmetric, but possibly ill-conditioned matrix. Math. Tables & Other Aids to Comput. 9, 96–101.

    Article  Google Scholar 

  • Schaffrin, B., 1975: Zur Verzerrtheit von Ausgleichungsergebnissen. Mitt. Inst. Theoret. Geodäsie Univ. Bonn No. 39, Bonn.

    Google Scholar 

  • Schaffrin, B., 1983a: Model choice and adjustment techniques in the presence of prior information. Dept.(of Geodetic Sci., Ohio State Univ., Tech. Rep. No. 351, Columbus/Ohio.

    Google Scholar 

  • Schaffrin, B., 1983b: A note on linear prediction within a Gauß-Markov model linearized with respect to a random approximation; in: T. Pukkila/S. Puntanen (eds.), Proc. First Tampere Sem. Linear Models (1983), Dept of Math. Sci/Statistics, Univ. of Tampere/Finland, Report No. A-138 (1985), 285–300.

    Google Scholar 

  • Schaffrin, B., 1985: Das geodätische Datum mit stochastischer Vorinformation. Deutsche Geodät. Komm., Bayr. Akad. der Wiss., Publ. C-313, München.

    Google Scholar 

  • Schaffrin, B., 1986a: On robust collocation; in: F. Sanso (ed.), Proc. First Hotine-Marussi-Symp. on Math. Geodesy (Roma 1985), Milano/ Italy 1986, 343–361.

    Google Scholar 

  • Schaffrin, B., 1986b: New estimation/prediction techniques for the determination of crustal deformations in the presence of prior geophysical information. Tectonophysics 130, 361–367.

    Article  Google Scholar 

  • Schock, E., 1984: Regularization of ill-posed equations with selfadjoint operators; in: V. Boffi/H. Neunzert (eds.), Proc. German-Italian Symp. on Applic. of Math, in Technology, Teubner, Stuttgart, 340–351.

    Google Scholar 

  • Schock, E., 1987: Implicit iterative methods for the approximate solution of ill-posed problems (submitted for publication).

    Google Scholar 

  • Vasin, V.V., 1987: Iterative methods for the approximate solution of ill-posed problems with a-priori information and their applications; in: H.W. Engl/C.W. Groetsch (eds.), Inverse and Ill-Posed Problems, Academic Press, Boston, 211–229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andreas Vogel Charles O. Ofoegbu Rudolf Gorenflo Bjorn Ursin

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig

About this chapter

Cite this chapter

Schaffrin, B., Middel, B. (1990). Robust Predictors and an Alternative Iteration Scheme for Ill-posed Problems. In: Vogel, A., Ofoegbu, C.O., Gorenflo, R., Ursin, B. (eds) Geophysical Data Inversion Methods and Applications. Theory and Practice of Applied Geophysics. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-89416-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89416-8_3

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-06396-2

  • Online ISBN: 978-3-322-89416-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics