Skip to main content

The Influence of the Core-mantle Boundary Irregularities on the Mass Density Distribution Inside the Earth

  • Chapter
Geophysical Data Inversion Methods and Applications

Part of the book series: Theory and Practice of Applied Geophysics ((THPAG))

Abstract

Models of the 3-D mass density variation inside the Earth have been derived for two models of the core-mantle boundary (henceforth referred as CMB): an oblate spheroid and a laterally varying relief. The derived density models significantly differ in mass density compensation. The density model with the CMB modelled as an oblate spheroid fulfils the hypothesis of isostatic compensation, but it does not explain the large-scale dynamic processes in the mantle. The latter model with the aspherical CMB also admits, besides the isostatic compensation in the upper mantle, downgoing and upgoing mass transport in the lower mantle by laterally varying density. This “dynamic” compensation is in a full agreement with the hypothesis of mantle convection. Furthermore, the density perturbations under subduction zones show the penetration of downwelling slabs into the lower mantle, which means that a model of whole mantle convection is favored over stratified convection divided by sharp chemical boundary near the 650-km discontinuity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Balmino, G., Lambeck, K., Kaula, W. M.: A spherical harmonic analysis of the Earth’s topography. J.Geophys.Res., 78 (1973), 478.

    Article  Google Scholar 

  • Creager, K.C., Jordan’, T.: Slab penetration into the lower mantle. J.Geophys.Res., 89 (1984), 3031.

    Article  Google Scholar 

  • Dziewonski, A.M., Anderson, D.L.: Preliminary reference Earth model. Phys. Earth Planet. Inter., 25 (1981), 297.

    Article  Google Scholar 

  • Hager, B.H.: Subducted slabs and the geoid: Constraints on mantle rheology and flow. J.Geophys.Res., 89 (1984), 6003.

    Article  Google Scholar 

  • Lerch, F.J., Klosko, S.M., Patel, G.B.: A refined gravity model from Lageos (GEM-L2). Geoph. Res. Lett., 9 (1982), 1263.

    Google Scholar 

  • Martinec, Z, Pěč, K.: Three-dimensional Earth’s density model inferred from the external gravitational field. In: Inverse Modeling in Exploration Geophysics, ed. A.Vogel et al., Vieweg, Braunschweig-Wiesbaden, 1989.

    Google Scholar 

  • Martinec, Z., Pěč, K.: Models of the three-dimensional anomalous mass density distribution in the Earth’s mantle as inferred from the core-mantle irregularities, (in preparation, 1989 ).

    Google Scholar 

  • Morelli, A., Dziewonski, A.M.: The harmonic expansion approach to the retrieval of deep Earth structure. Seismic Tomography, ed. G.Nolet, Reidel Publ. Comp., 1987, 251.

    Google Scholar 

  • Morelli, A: FIR filters in spherical geometry: core-mantle boundary topography from PcP travel times. In: Inverse Modeling in Exploration Geophysics, ed. A.Vogel et al., Vieweg, Braunschweig-Wiesbaden, 1989.

    Google Scholar 

  • Pěč, K. , Martiriec, Z. : Constraints to the three-dimensional non-hydrostatic density distribution in the Earth. Studia geoph. et geod., 28 (1984),.364.

    Article  Google Scholar 

  • Richards, M.A., Hager, B.K., Sleep, N.H.: Dynamically supported geoid highs over hotspots: observation and theory. J.Geoph.Res., 93 (1988), 7690.

    Article  Google Scholar 

  • Vogel, A.: The irregular shape of the Earth1s fluid core — a comparison of early results with modern computer tomograp¬hy. In: Inverse Modeling in Exploration Geophysics, ed. A.Vogel et al., Vieweg, Braunschweig-Wiesbaden, 1989.

    Google Scholar 

  • Sanso, F., Barzaghi, R., Tscherning, C.C.: Choice of norm for the density distribution of the Earth. Geophys. J. R. astr. Soc., 87 (1986), 123.

    Google Scholar 

  • Shcherbakov, A.M.: Garmonicheskij analiz relefa Zemli po sfericheskim funkcijam do 30-go porjadka i stepeni. Fizika Zemli, 11 (1983), 15.

    Google Scholar 

  • Tarantola, A.: Inverse Problem Theory. Methods for Data Pitting and Model Parameter Estimation. Elsevier, Amsterdam, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andreas Vogel Charles O. Ofoegbu Rudolf Gorenflo Bjorn Ursin

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig

About this chapter

Cite this chapter

Martinec, Z., Pěč, K. (1990). The Influence of the Core-mantle Boundary Irregularities on the Mass Density Distribution Inside the Earth. In: Vogel, A., Ofoegbu, C.O., Gorenflo, R., Ursin, B. (eds) Geophysical Data Inversion Methods and Applications. Theory and Practice of Applied Geophysics. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-89416-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89416-8_15

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-06396-2

  • Online ISBN: 978-3-322-89416-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics