Skip to main content

Mathematical Attractor Theory and Plutonic-Volcanic Episodicity

  • Chapter

Part of the book series: Earth Evolution Sciences ((EES))

Abstract

The mathematical theory of attractors is reviewed descriptively. An attractor can be thought of as a map of the characteristic dynamic states of an evolving system, whether the form produced is continuous or discontinuous, regularly periodic or stochastic. Graphical examples of attractors showing dynamic bifurcations in the evolution of magma transport from the mantle to the surface are developed in terms of a model of nonlinearly pumped volumetric capacitors. Dynamic bifurcation means that the system alternates regularly or irregularly between two or more volumetric states. The potential for a volume domain (whether a plexus or a magma chamber) to store and discharge increments of magma is the basis for calling the system a volumetric capacitor. Pumping is represented by percolation and/or extensional fracture mechanisms of variable magma transport from a mantle source. Steady, oscillatory, and pulsatory flow regimes are predicted which qualitatively simulate the behavior of near-surface inflation/deflation cycles and volcanic eruptions. Buildup to catastrophic pyroclastic eruptions of silicic magma during the growth of caldera-forming ash-flow systems is described as attractor evolution produced by convergences of multidimensional rate processes. Such convergent behavior is analogous to the dynamics of slaved systems described by synergetic feedback, such as Haken’s (1979) theory of the optical laser. In the magmatic context, slaving refers to a condition where focused volumetric states of the system are outgrowths of cooperation among transport paths originating from multiple volumetric states (e. g., the net effects on heat flow and magma transport paths of basaltic fields surrounding an evolving silicic system). The multiple states, in turn, have arisen as bifurcations of magma transport from a source system of primitive magma in the mantle. In a metaphorical sense, culminating stages of silicic volcanism are laser-like. The metaphor is based on parallelism with the idea that energy (in the form of protons or magma) is pumped into the system in multi-mode states which ultimately feed a single state. In the optical analogy this is the distinction between the laser mode and multiple modes of ordinary light. In the magma system it is the distinction between a central evolved silicic chamber and the multimode field of basaltic injections of the crust that supports its evolution (the “basaltic shadow” of Smith and Shaw, 1973; 1975). Synergy is expressed by the cooperative effects which create the centralized chamber. Entirely new kinds of energetic states are thereby made possible (e. g., crustal melting, convection, chemical zonation, and large-scale eruptive pulses). The synergetic process is self-organizing in the sense that the composite system is slaved to an effectively single culminating mode of eruption leading to the caldera-forming stage of ash-flow magmatism. Other eruptive styles occurring both before and after such an episode represent detuning of the optimally slaved state. Attractor models show features that resemble Smith’s (1979) concepts of the evolution of silicic magmatism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, R. H. and C. D. Shaw (1983): Dynamics — The Geometry of Behavior, Part 2. Santa Cruz, CA, Aerial Press, 139 p.

    Google Scholar 

  • Bacon, C. R. (1982): Time-predictable bimodal volcanism in the Coso Range, California. Geology, v. 10, p. 65–69.

    Article  Google Scholar 

  • Bacon, C. R. (1983): Eruptive history of Mount Mazama and Crater Lake caldera, Cascade Range, U.S.A. Jour. Volc. Geothermal Res., v. 18, p. 57–115.

    Article  Google Scholar 

  • Bacon, C. R. (1985): Implications of silicic vent patterns for the presence of large crustal magma chambers. Jour. Geophys. Res., v 190, p. 11, 243–11, 252.

    Google Scholar 

  • Campbell, D. and H. Rose (1983): Order in Chaos. N. Y., North-Holland, 362 p.

    Google Scholar 

  • Collet, P. and J.-P. Eckmann (1980): Iterated Maps on the Interval as Dynamical Systems. Boston, Birkauser, 247 p.

    Google Scholar 

  • Crisp, J. A. (1984): Rates of magma emplacement and volcanic output. Jour. Volc. Geothermal Res., v. 20, p. 177–211.

    Article  Google Scholar 

  • Dzurisin, D., R. Y. Koyanagi, and T. T. English (1984): Magma supply and storage at Kilauea Volcano, Hawaii, 1956–1983. Jour. Volc. Geothermal Res., v. 21, p. 177–206.

    Article  Google Scholar 

  • Eigen, M. and P. Schuster (1979): The Hypercycle; A Principle of Natural Self-Organization. New York, Springer-Verlag, 92 p.

    Google Scholar 

  • Eigen, M., W. Gardiner, P. Schuster, and R. Winkler-Oswatitsch (1981): The origin of genetic information. Sci. Am., v. 244, No. 4 (April), p. 88–118.

    Article  Google Scholar 

  • Eldredge, N. and S. J. Gould (1972): Punctuated equilibria: An alternative to phyletic gradualism, in Thomas J. M. Schopf, ed., Models in Paleobiology. San Francisco, Freeman, Cooper and Co., P. 82–115.

    Google Scholar 

  • Farmer, D., T. Toffoli, and S. Wolfram (1984): Cellular Automata. N. Y., North-Holland Physics Publishing, 247 p.

    Google Scholar 

  • Feigenbaum, M. J. (1979a): The universal metric properties of nonlinear transformations. Jour. Stat. Phys., v. 21, p. 669–706.

    Article  Google Scholar 

  • Feigenbaum, M. J. (1979b): The onset spectrum of turbulence. Phys. Lett., v. 74A, p. 375–378.

    Article  Google Scholar 

  • Feigenbaum, M.J. (1980): Universal behavior in nonlinear systems. Los Alamos Science. v. 1, p. 4–27.

    Google Scholar 

  • Gould, S.J. and N. Eldredge (1977): Punctuated equilibria: the tempo and mode of evolution reconsidered. Paleobiology, v. 3, p. 115–151.

    Google Scholar 

  • Guckenheimer, J. and P. Holmes (1983): Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. New York, Springer-Verlag, 453 p.

    Google Scholar 

  • Guckenheimer, J., G. Oster and A. Ipaktchi (1977): The dynamics of density dependent population models. Jour. Math. Biology, v. 4, p. 101–147.

    Article  Google Scholar 

  • Gurel, O. and O. E. Rössler (1979): Bifurcation Theory and Applications in Scientific Disciplines. New York Acad. Sciences, Annals, v. 316, 700 p.

    Google Scholar 

  • Haken, H. (1978): Synergetics. New York, Springer-Verlag, 355 p.

    Book  Google Scholar 

  • Haken, H. (1979): Nonequilibrium phase transitions and instability hierarchy of the laser, an example from synergetics, in A. Pacault and C. Vidal (eds.), Synergetics, Far From Equilibrium. New York, Springer-Verlag, p. 22–23.

    Google Scholar 

  • Hildreth, W. (1981): Gradients in silicic magma chambers: Implications for lithospheric magmatism. Jour. Geophys. Res., v. 86, p.10, 153–10, 192.

    Google Scholar 

  • Hofstadter, D. R. (1981): Metamagical themas. Strange attractors: mathematical models delicately poised between order and chaos. Scientific American, v. 245, No. 5 (Nov.), p. 22–43.

    Google Scholar 

  • Horton, C. W. Jr., L. E. Reichl, and V. G. Szebethely (1983): Long-Time Prediction in Dynamics. New York, John Wiley and Sons, 496 p.

    Google Scholar 

  • Lipman, P. W. (1984): The roots of ash flow calderas in western North America: Windows into the tops of granitic batholiths. jour. Geophys. Res., v. 89, p. 8801–8841.

    Article  Google Scholar 

  • Lorenz, E.N. (1963): Deterministic non-periodic flow. Jour. Atmos. Sci., v. 20, p. 130–141.

    Article  Google Scholar 

  • Lorenz, E. N. (1964): The problem of deducing the climate from the governing equations. Tellus, v. 16, 1–11 p.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1977): Fractals; Form, Chance and Dimension. San Francisco, W. H. Freeman, 365 p.

    Google Scholar 

  • Mandelbrot, B. B. (1982): The Fractal Geometry of Nature. San Francisco, W. H. Freeman, 460 p.

    Google Scholar 

  • Mandelbrot, B. B. (1983): On the quadratic mapping zôz2—i. for complex µ and z: The fractal structure of its M set, and scaling. Physica D, v. 7D, p. 224–239.

    Article  Google Scholar 

  • May, R.M. (1976): Simple mathematical models with very complicated dynamics. Nature, v. 261, p. 459–467.

    Article  Google Scholar 

  • May, R. M. and G. F. Oster (1976): Bifurcations and dynamic complexity in simple ecological models. Amer. Naturalist, v. 110, p. 573–599.

    Article  Google Scholar 

  • Moore, D. R., J. Toomre, E. Knobloch, and N. O. Weiss (1983): Period doubling and chaos in partial differential equations for thermosolutal convection. Nature, v. 303, p. 663–667.

    Article  Google Scholar 

  • Poundstone, W. (1985): The Recursive Universe. N. Y., William Morrow and Co., Inc., 252 p.

    Google Scholar 

  • Prigogine, I. (1980): From Being to Becoming. San Francisco, W. H. Freeman, 272 p.

    Google Scholar 

  • Prufer, M. (1985): Turbulence in multistep methods for initial value problems. SIAM, Jour. Appl. Math. v. 45, p. 32–69.

    Google Scholar 

  • Shaw, H. R. (1965): Comments on viscosity, crystal settling, and convection in granitic magmas. Am. Jour. Sci., v. 263, p. 120–152.

    Article  Google Scholar 

  • Shaw, H. R. (1969): Rheology of basalt in the melting range. Jour. Petrology, v. 10, p. 510–535.

    Article  Google Scholar 

  • Shaw, H. R. (1973): Mantle convection and volcanic periodicity in the Pacific; Evidence from Hawaii. Geol. Soc. America Bull., v. 84, p. 1505–1526.

    Article  Google Scholar 

  • Shaw, H. R. (1974): Diffusion of H2O in granitic liquids: Part I. Experimental data; Part II. Mass transfer in magma chambers, in H. S. Yoder and R. A. Yund (eds.) Geochemical Transport and Kinetics. Washington, D. C., Carnegie Inst. Washington, p. 139–170.

    Google Scholar 

  • Shaw, H. R. (1980): The fracture mechanisms of magma transport from the mantle to the surface, in R. B. Hargraves (ed.), Physics of Magmatic Processes. Princeton, N. J., Priceton Univ. Press, p. 201–264.

    Google Scholar 

  • Shaw, H. R. (1983): Magmatic processes and orbital evolution. Geol. Soc. Am., Abstracts with Programs, v. 15, p. 684.

    Google Scholar 

  • Shaw, H. R. (1985): Links between magma-tectonic rate balances, plutonism, and volcanism. Jour. Geophys. Res., v$190, p. 11, 275–11, 288.

    Google Scholar 

  • Shaw, H. R. (in press): Uniqueness of volcanic systems. U.S. Geological Survey Prof. Paper 1350.

    Google Scholar 

  • Shaw, H. R. and D. A. Swanson (1970): Eruption and flow rates of flood basalts, in E. H. Gilmour and D. Stradling (eds.) Columbia River Basalt Symposium, 2nd Proc., Cheney, WA, Eastern Washington State College Press, p. 271–299.

    Google Scholar 

  • Shaw, H. R. and A. E. Gartner (1983): Mathematical theory of attractors and the evolution of order in branching systems, hydrologic, biologic and tectonic. Geol. Soc. Am., Abstracts with Programs, v. 15, p. 329.

    Google Scholar 

  • Shaw, H. R., R. W. Kistler, and J. F. Evernden (1971): Sierra Nevada plutonic cycle: Part II. Tidal energy and a hypothesis for orogenic-epeirogenic periodicities. Geol. Soc. Am., Bull., v. 82, p. 869–896.

    Article  Google Scholar 

  • Shaw, H. R., E. D. Jackson and K. E. Bargar (1980): Volcanic periodicity along the Hawaiian-Emperor chain. Am. Jour. Sci., v. 280—A, p. 667–708.

    Google Scholar 

  • Shaw, R. (1981): Strange attractors, chaotic behavior, and information flow. Z. Naturforsch., v. 36a, p. 80–112.

    Google Scholar 

  • Shaw, R. (1984): The Dripping Faucet as a Model Chaotic System. Santa Cruz, CA, Aerial Press, 114 p.

    Google Scholar 

  • Smith, R. L. (1979): Ash-flow magmatism. Geol. Soc. America, Spec. Paper 180, p. 5–27.

    Google Scholar 

  • Smith, R. L. and R. A. Bailey (1966): The Bandelier Tuff: A study of ash-flow eruption cycles from zoned magma chambers. Bull. Volcanologique, v. 29, p. 83–104.

    Article  Google Scholar 

  • Smith, R. L. and H. R. Shaw (1973): Volcanic rocks as geologic guides to geothermal exploration and evaluation. EOS [Amer. Geophys. Union, Trans.], v. 54, p. 1213.

    Google Scholar 

  • Smith, R. L. and H. R. Shaw (1975): Igneous-related geothermal systems in D. E. White and D. L. Williams (eds.), Assessment of Geothermal Resources of the United States — 1975. U.S. Geol. Survey Cire. 726, p. 58–83.

    Google Scholar 

  • Smith, R. L. and H. R. Shaw (1979): Igneous-related geothermal systems, in L. J. P. Muffler, ed., Assessment of Geothermal Resources of the United States - 1978. U.S. Geol. Survey, Circ. 790, p. 12–17.

    Google Scholar 

  • Sparrow, C. (1982): The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. N.Y., Springer-Verlag.

    Book  Google Scholar 

  • Spera, F. J. and J. A. Crisp (1981): Eruption volume, periodicity, and caldera area: Relationships and inferences on development of compositional zonation in silicic magma chambers. Jour. Vole. Geothermal Res., v. 11, p. 169–187.

    Article  Google Scholar 

  • Tanaka, K. L., E. M. Shoemaker, G.E. Ulrich, and E. W. Wolfe (1986): Migration of volcanism in the San Francisco volcanic field, Arizona. Geol. Soc. Am., Bull., v. 97, p. 129–141.

    Article  Google Scholar 

  • Thom, René (1975): Structural Stability and Morphogenesis. Reading, Mass., W. A. Benjamin, 348 p.

    Google Scholar 

  • Wadge, G. (1982): Steady state volcanism: Evidence from eruption histories of polygenetic volcanoes. Jour. Geophys. Res., v. 87, p. 4035–4049.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Chi-Yu King Roberto Scarpa

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig

About this chapter

Cite this chapter

Shaw, H.R. (1988). Mathematical Attractor Theory and Plutonic-Volcanic Episodicity. In: King, CY., Scarpa, R. (eds) Modeling of Volcanic Processes. Earth Evolution Sciences. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-89414-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89414-4_9

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-08994-8

  • Online ISBN: 978-3-322-89414-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics