Skip to main content

Part of the book series: Teubner Studienskripten Physik ((TSSP))

  • 102 Accesses

Zusammenfassung

Obwohl Temperaturstrahler — wie Sonne, Glühlampe und das große Feld der breitbandigen Infrarotstrahler — als Strahlungsquelle für viele Anwendungen unverzichtbar sind, zählen zu den eigentlichen Halbleiterstrahlungsquellen nur bestimmte Elektrolumineszenzstrahler: Lumineszenzdioden, Anzeigeeinheiten und Laserdioden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Lee, T.P.: Recent development in LED’s for optical fiber communication systems, Int. Fiber Optics and Comm., Handbook and buyers guide 1980–1981, 6

    Google Scholar 

  2. Okuda, H.; et al.: High-radiance light emitting diodes for optical fiber communications, Suitomo Electr. Techn. Rev. 20 (1981), 202

    Google Scholar 

  3. Botez, D.; et al.: Comparison of surface and edge-emitting LED’s use in fiber optical communications. IEEE Trans. ED-26 (1979), 1230

    Google Scholar 

  4. Tsang, W.T. (Ed.): Lightwave Communications technology pt. B. Semiconductors and Semimetals Vol. 22 ( Willardson, R.J., Ed.). Academic Press New York 1985

    Google Scholar 

  5. Niina, T.; et al.: High brightness GaP green LED’s, IEEE Trans. ED-30 (1983), 264

    Google Scholar 

  6. Lastros-Martinez, A.: Internal quantum efficiency measurements for GaAs light emitting diodes, J. Appl. Phys. 49 (1978), 3565

    Article  Google Scholar 

  7. Kressel, H., Buttler, J.K.: Semiconductor lasers and LED’s. Academic Press, New York 1977

    Google Scholar 

  8. Esteban, M.: Evaluation of semiconductor optical parameters for laser diodes. IEE Proc. J. 138 (1991), 79

    Google Scholar 

  9. Lee, T.P.; Dentai, A.G.: Power and modulation bandwidth of GaAsAlGaAs high radiance LED’s for optical communication systems. IEEE J. Quant. El. QE-14 (1978), 150

    Google Scholar 

  10. Harth, W.: Influence of bias current on the modulation behaviour of GaAs-GaA1As LEDs, AEO 35 (1981), 373

    Google Scholar 

  11. Harth,W.: Power output and rise time of light emitting diodes, AEU 30 (1976), 99

    Google Scholar 

  12. Suematsu, Y.: Long-wavelength optical fiber communication, Proc. IEEE 71 (1983), 692

    Article  Google Scholar 

  13. Trommer, R.; Heinen, J.: Liquid-phase epitaxy of (In,Ga) As, P) and (In,Ga) As on InP for 1.3 pm high-radiance IRED’s and for photodiodes in the 1.3 pm to 1.65pm wavelength range. Siemens Forsch. u. Entw.-Ber. 11 (1982), 204

    Google Scholar 

  14. Temkin, H.; et al.: InGaAsP LED’s for 1.3 pm optical transmission. Bell. Syst. Tech. J. 62 (1983), 1

    Google Scholar 

  15. Jacob, G.; et al.: Efficient injection mechanism for electroluminescence in GaN. Appl. Phys. lett. 30 (1977), 412

    Article  Google Scholar 

  16. v. Munch, W.; et al.: Silicon carbide blue-emitting diodes produced by LPE. Sol. State El. 21 (1978), 1129

    Google Scholar 

  17. Marcuse, D.: LED Fundamentals: Comparison of front-and edge- emitting diodes. IEEE J. Quant. Electr. QE-13 (1977), 819

    Google Scholar 

  18. Boeck, J.; et al.: A1GaAs/GaAs double heterostructure superluminescent diodes for optical transmission systems. Frequenz 33 (1979), 278

    Article  Google Scholar 

  19. Carr, W.N.; Photometric figures of merit for semiconductor luminescent sources operating in spontaneous mode. Infrared Phys. 6 (1966), 1

    Article  Google Scholar 

  20. Shumate, P.W.; et al.: Lightwave transmitters. In: Kressel, H. (Herausg.), Semiconductor devices for optical communications. Springer Verlag, Berlin 1980.

    Google Scholar 

  21. Gordon, N.T.: Electroluminescence by impact excitation in ZnS:Mn and ZnSe:Mn Schottky diodes. IEEE Trans.. ED-28 (1980), 434

    Google Scholar 

  22. Lawther, C.; et al.: Blue-emitting S+-implanted Au-ZnS Schottky barrier diodes. Jap. J. appl. Phys. 19 (1080), 939

    Article  Google Scholar 

  23. Lawther, C.: A general model for widegap MIS light-emitting diodes. Jap. J. appl. Phys. 18 (1979), 849

    Article  Google Scholar 

  24. Bayraktaroglu, B.; et al.: White-light emission from GaAs MOS structures. El. lett. 14 (1978), 470

    Article  Google Scholar 

  25. Bergh. A.A.; et al.: Light-emitting diodes. Proc. IEEE 60 (1972), 156

    Article  Google Scholar 

  26. Schauer, A.: State of the art and new developments in optoelectronic displays. In: Displays, Technology and Applications IPC-2 (1080), 16

    Google Scholar 

  27. Bylander, E.G.: Electronic displays. McGraw Hill, New York 1979

    Google Scholar 

  28. DeGennes, P.G.: The physics of liquid crystals. Oxford, Clarendon 1974

    Google Scholar 

  29. Okamoto, K. u. a.: Low-threshold voltage thin-film elektroluminescent devices, IEEE Trans. ED-28 (1981), 698

    Google Scholar 

  30. Kressel, H. (Herausg.): Semiconductor devices for optical communication. Springer Verlag, Berlin 1980

    Google Scholar 

  31. Thompson, G.H.B.: Physics of semiconductor laser devices. J. Wiley & Sons, New Stork 1980

    Google Scholar 

  32. Agrawal. G. P. et al: Long-wavelength semiconductor lasers. Van Nostrand Reinhold. New York 1986

    Google Scholar 

  33. Casey, H.C. jr.; et al.: Heterostructure lasers (Part A and B). Academic Press, New York 1978

    Google Scholar 

  34. Thompson, G.H.B.: Physics of semiconductor laser devices. J. Wiley & Sons, New York 1980

    Google Scholar 

  35. Sonderheft: Special issue on light sources and detectors. IEEE Trans. ED-28 (1981), No. 4

    Google Scholar 

  36. Stern, F.: Calculated spectral dependence of gain in excited GaAs. J. appl. Phys. 47 (1976), 5372

    Article  Google Scholar 

  37. Asada, M. et al: The temperature dependence of the threshold current of GaInAsP/InP DH lasers. IEEE J. Quat.El. QE-17(1981), 611

    Google Scholar 

  38. Casey, H.C. jr.: Room temperature threshold current dependence of GaAs-AlxGa1_xAs double hetero-structure lasers on x and active-layer thickness. J. appl. Phys. 49 (1978), 368

    Article  Google Scholar 

  39. Hayakawa, T.; et al.: Temperature dependence of threshold current in GaAlAs double-heterostructure lasers with emission wavelengths of 0,74–0,9 pm. IEEE J. Quant. E1. QE-17 (1981), 2205

    Google Scholar 

  40. Ishikawa, M.: Temperature dependence of the threshold current for InGaAlP visible laser diodes. IEEE J. Quant. El. QE-27 (1991), 23

    Google Scholar 

  41. Burrus, C.A.; et al.: “Optical sources” in Miller, S.E. and Chynoweth, A.G. (Eds.): Optical fiber communication. Academic Press, New Work 1979

    Google Scholar 

  42. Botez, D.: Constricted double-heterostructure lasers structures and electrooptical characteristics. IEEE J. Quant. El. QE-17 (1981), 2290

    Google Scholar 

  43. Nagarajan, R.: Band filling in GaAs/A1GaAs multiquantum well lasers and its effect on the threshold current. IEEE J. Quat. El. QE-25(1989), 1161

    Google Scholar 

  44. Rosenzweig, M.: Threshold current analysis of InGaAs-InGaAsP multiquantum well separate confinement lasers. IEEE J. Quant. El. QE-27(1991), 1804

    Google Scholar 

  45. Zhu, L.: Temperature dependence of optical gain, quantum efficiency and threshold current in GaAs/GaAlAs graded index separate-confinement heterostructure singled quantum well lasers. IEEE J. Quant. El. QE-25 (1989), 200

    Google Scholar 

  46. Mirano, R.; et al.: AlGaAs-TJS-lasers with very low threshold current and high efficiency. Jap. J. appl. Phys. 17 (1978), Suppl. 17–1, 355

    Google Scholar 

  47. Hatakoshi, G.: Short-Wavelength InGaA1P visible laser diodes. IEEE J. Quant. El. QE-27 (1991), 1568

    Google Scholar 

  48. Amann, M.C.: New stripe-geometry laser with simplified fabrication process. E1. lett. 15 (1979). 441

    Article  Google Scholar 

  49. Streifer, W.; et al.: Coupled wave analysis of DFB- and DBRlasers, IEEE J. Quant. Electr. QE-13 (1977), 134

    Google Scholar 

  50. Holonyak, N. jr.; et al.: Quantum-well heterostructure lasers. IEEE J. Quant. El. QE-16 (1980), 170

    Google Scholar 

  51. Kikushima, K. et al: Tunable amplification properties of distributed feedback laser diodes. IEEE J. Quant. El. QE-25 (1989), 163

    Google Scholar 

  52. Henry, C.: Theory of the linewidth of semiconductor laser. IEEE J. Quant. El. QE-18(1982), 259

    Google Scholar 

  53. Agrawal, G.P.: Modeling of distributed feedback semiconductor lasers with axially-varying parameters. IEEE J. Quant. El. QE-24 (1988), 2407

    Google Scholar 

  54. Sacher, J.: Nonlinear dynamics of semiconductor laser emission under variable feedback conditions. IEEE J.Quant. El. QE-27(1991), 373

    Google Scholar 

  55. Alphonse, G.: High power superluminescent diodes. IEEE Quant. El. QE-24 (1988), 2454

    Google Scholar 

  56. Tateoka, K. et al: A high power GaA1As superluminescent diode with an antireflective window structure. IEEE Quant. El. QE-27 (1991), 1804J.

    Google Scholar 

  57. Petermann, K.: Laser diode modulation and noise. Kluwer Academic Publ. Tokyo 1988

    Book  Google Scholar 

  58. Tsang, W.T.: Heterostructure semiconductor lasers prepared by molecular beam epitaxy. IEEE J. Quant. El. QE-20 (1984), 1119

    Google Scholar 

  59. Marcuse, D. et al: On approximate analytical solutions of rate equations for studying transient spectra of injection lasers. IEEE J.Quant. El. QE-19 (1983), 1397

    Google Scholar 

  60. Tucker, R.S.: Large-signal circuit model for simulation of injec- tion laser modulation dynamics. IEEE Proc. I 28 (1981), 180

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 B. G. Teubner Stuttgart

About this chapter

Cite this chapter

Paul, R. (1992). Halbleiterstrahlungsquellen. In: Optoelektronische Halbleiterbauelemente. Teubner Studienskripten Physik. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-89215-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-89215-7_3

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-519-10096-6

  • Online ISBN: 978-3-322-89215-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics