Advertisement

Zusammenfassung

Licht ist für die belebte Welt zugleich Informationsmedium und Energiequelle, die von Tieren und Pflanzen allerdings auf sehr unterschiedliche Weise genutzt werden. Tiere verwerten fast ausschließlich den Informationsgehalt des Lichts. Lage und Bewegung von Objekten werden geortet und ihre Gestalt und Farbe erkannt. Die wesentlichsten Verhaltensweisen werden dadurch (mit)bestimmt, sei es bei der Suche nach Nahrung, nach Schutz vor der Witterung, nach Artgenossen für die geschlechtliche Vermehrung oder bei der Flucht vor Feinden. Den Pflanzen hingegen stehen im allgemeinen keine dieser Möglichkeiten offen. Sie sind lebenslang an ihren ursprünglichen Standort gebunden, auf die dort angebotenen Energiequellen und Aufbaustoffe angewiesen, und sie müssen sich dort auch ohne Ausweichmöglichkeiten mit jedwelchen schädlichen Einwirkungen auseinandersetzen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    W. Shropshire, Jr., H. Mohr (Hrsg.): Photomorphogenesis. Encyclopedia of Plant Physiology, New Series, vol. 16A/B, Springer, Berlin/Heidelberg, New York 1983.Google Scholar
  2. (b).
    H. Smith, M. G. Holmes (Hrsg.): Techniques in Photomorphogenesis. Academic Press, New York 1984, S. 308.Google Scholar
  3. (c).
    G. Blauer, H. Sund (Hrsg.), Optical Properties and Structure of Tetrapyrroles. W. de Gruyter, Berlin 1985.Google Scholar
  4. (d).
    R. E. Kendrick, G. H. M. Kronenberg (Hrsg.), Photomorphogenesis in Plants. Martinus Nijhoff Publ., Dordrecht 1986.Google Scholar
  5. [2]
    S. E. Braslavsky: The Photophysics and Photochemistry of the Plant Photoreceptor Pigment Phytochrome. Pure Appl. Chem. 56, 1153 (1984).CrossRefGoogle Scholar
  6. [3]
    P. H. Quail: Phyotochrome: a Regulatory Photoreceptor that controls the Expression of its Own Gene. Tr. Biochem. Sci. 9, 450 (1984).CrossRefGoogle Scholar
  7. [4]
    H. P. Hershey, R. F. Barker, J. T. Colbert, J. L. Lissemore, P. H. Quail: Phytochrome: Molecular Properties, Feedback Regulation of mRNA Levels and Genomic Clone Isolation. In: L. Van Vloten-Doting (Hrsg.), Molecular Form and Function of the Plant Genome. Plenum Press, 1985, S. 101.Google Scholar
  8. [5]
    W. Rüdiger, P. Eilfeld, F. Thümmler: Phytochrome, the Visual Pigment of Plants: Chromophore Structure and Chemistry of Photoconversion. In: [1c], S. 349.Google Scholar
  9. [6]
    P. S. Song: The Molecular Model of Phytochrome Deduced from Optical Probes. In: [lc], S. 331.Google Scholar
  10. [7]
    J. C. Lagarias: Progress in the Molecular Analysis of Phytochrome. Photochem. Photobiol. 42, 811 (1985).CrossRefGoogle Scholar
  11. [8]
    Beiträge von (a) L. O. Bjorn: Introduction. S. 3. (b) W. Rüdiger: Phytochrome; the Chromophore. S. 17. (c) R. D. Vierstra, P. H. Quail: Phytochrome; the Protein. S. 35. (d) L. H. Pratt: Phytochrome; Localization within the Plant. S. 61. (e) E. Schäfer, K. Apel, A. Batschauer, E. Mösinger: Phytochrome; the Molecular Biology of Action. S. 83. (f) G. H. M. Kronenberg, R. E. Kendrick: Phytochrom; the Physiology of Action. S.99. (g) S. J. Roux: Phytochrome and Membranes. S.115. In: [1d].Google Scholar
  12. [9]
    H. Smith: The light environment. The Perception of Light Quality. In: [1d] S. 187.Google Scholar
  13. [10]
    L. H. Flint, E. D. Mcalister: Wavelengths of Radiation in the Visible Spectrum Inhibiting the Germination of Light-Sensitive Lettuce Seed. Smithsonian Misc. Collect. 94, 1 (1935).Google Scholar
  14. [11]
    L. H. Flint, E. D. Mcalister: Wavelengths of Radiation in the Visible Spectrum Promoting the Germination of Light-Sensitive Lettuce Seed. Smithsonian Misc. Collect. 96, 1 (1937).Google Scholar
  15. [12]
    H. A. Borthwick, S. B. Hendricks, M. W. Parker, E. H. Toole, V. K. Toole: A Reversible Photo-reaction Controlling Seed Germination. Proc. Natl. Acad. Sci. USA 38, 662 (1952).ADSCrossRefGoogle Scholar
  16. [13]
    W. Shropshire, Jr., W. H. Klein, V. B. Elstad: Action Spectra of Photomorphogenic Induction and Photoinactivation of Germination in Arabidopsis thaliana. Plant Cell Physiol. 2, 63 (1961).Google Scholar
  17. [14]
    R.B. Withrow, W. H. Klein, V.B. Elstad: Action Spectra of Photomorphogenic Induction and its Inactivation. Plant Physiol. 32, 453 (1957).CrossRefGoogle Scholar
  18. [15]
    M. W. Parker, S. B. Hendricks, H. A. Borthwick, N. J. Scully: Action Spectra for the Photo-periodic Control of Floral Initiation of a Short Day Plant. Bot. Gaz. 108, 1 (1946).CrossRefGoogle Scholar
  19. [16]
    H. A. Borthwick, S. B. Hendricks, M.W. Parker: Action Spectrum for the Photoperiodic Control of Floral Initiation of a Long Day Plant, Winter Barley (Hordeum vulgare). Bot. Gaz. 110, 103 (1948).CrossRefGoogle Scholar
  20. [17]
    W.L. Butler, K. H. Norrts, H.W. Siegman, S. B. Hendricks: Detection, Assay and Preliminary Purification of the Pigment Controlling Photoresponsive Development of Plant. Proc. Natl. Acad. Sci. USA 45, 1703 (1959).ADSCrossRefGoogle Scholar
  21. [18]
    W.L. Butler: Remembrances of Phytochrome Twenty Years Ago. In: J. De Greet; (Hrsg.), Photoreceptors and Plant Development. Proc. Ann. Eur. Photomorphogenesis Symp. Antwerpen University Press 1980, S. 3.Google Scholar
  22. [19]
    A. M. Jones, R. D. Vierstra, S.M. Daniels, P. H. Quail: The Role of Separate Molecular Domains in the Structure of Phytochrome from Avena sativa. Planta 164, 501 (1985).CrossRefGoogle Scholar
  23. [20]
    E. E. Mumeord, E. L. Jenner: Purification and Characterization of Phytochrome from Oat Seedlings. Biochemistry 5, 3657 (1966).CrossRefGoogle Scholar
  24. [21]
    G. Gardner, C. Pike, H. V. Riice, W. R. Briggs:,Disaggregation` of Phytochrome in vitro - a Consequence of Proteolysis. Plant Physiol. 48, 686 (1971).CrossRefGoogle Scholar
  25. [22]
    L. H. Pratt: Phytochrome: The Protein Moiety. Ann. Rev. Plant Physiol. 33, 557 (1982).CrossRefGoogle Scholar
  26. [23]
    R. D. Vierstra, M.-M. Cordonnier, L. H. Pratt, P. H. Quau.: Native Phytochrome. Immunoblot Analysis of Relative Molecular Mass and in vitro Proteolytic Degradation for Several Plant Species. Planta 160, 521 (1984).CrossRefGoogle Scholar
  27. [24]
    R.D. Vierstra, P.H. Quail: Native Phytochrome. Inhibition of Proteolysis Yields a Homogeneous Monomer of 124 Kilodaltons from Avena. Proc. Natl. Acad. Sci. USA 79, 5272 (1982).ADSCrossRefGoogle Scholar
  28. [25]
    H.P. Hershey, R. F. Barker, K.B. Idler, J.L. Lissemore, P.H. Quail: Analysis of Cloned cDNA and Genomic Sequences for Phytochrome: Complete Amino Acid Sequence for Two Gene Products Expressed in Etiolated Avena. Nuc. Acids Res. 13, 8543 (1985).CrossRefGoogle Scholar
  29. [26]
    R. D. Vierstra, P. H. Quail: Purification and Initial Characterization of 124-Kilodalton Phytochrome from Avena. Biochemistry 22, 2498 (1983).CrossRefGoogle Scholar
  30. [27]
    J. C. Lagarias, J. M. Kelly, K. L. Cyr, W. O. Smith, Jr.: Comparative Photochemical Analysis of Highly Purified 124 Kilodalton Oat and Rye Phytochromes in vitro. Photochem. Photobiol. 46, 5 (1987).CrossRefGoogle Scholar
  31. [28]
    W. Rüdiger, T. Brandlmeier, I. Blos, A. Gossauer, J. P. Weller’Isolation of the Phytochrome Chromophore. The Cleavage Reaction with Hydrogen Bromide. Z. Naturforsch. 35c, 763 (1980).Google Scholar
  32. [29]
    J. P. Weller, A Gossauer: Synthese und Photoisomerisierung des racem. Phytochromobilin Dimethylesters. Chem. Ber. 113, 1603 (1980).CrossRefGoogle Scholar
  33. [30]
    J. C. Lagarias, H. Rapaport: Chromopeptides from Phytochrome. The Structure and Linkage of the Pr Form of the Phytochrome Chromophore. J. Am. Chem. Soc. 102, 4821 (1980).CrossRefGoogle Scholar
  34. [31]
    W. Rüdiger, F. Thümmler, E. Cmiel, S. Schneider: Chromophore Structure of the Physiologically Active Form (Pfr) of Phytochrome. Proc. Natl. Acad. Sci. USA 80, 6244 (1983).ADSCrossRefGoogle Scholar
  35. [32]
    E. Thümmler, W. Rüdiger, E. Cmiel, S. Schneider: Chromopeptides from Phytochrome and Phycocyanin. NMR Studies of the Pfr and Pr Chromophores of Phytochrome and E, Z Isomeric Chromophores of Phycocyanin. Z. Naturforsch. 36c, 359 (1983).Google Scholar
  36. [33]
    S. E. Braslavsky, A. R. Holzwarth, K. Schaffner: Konformationsanalyse, Photophysik und Photochemie der Gallenpigmente; Bilirubin-und Biliverdin-Dimethylester und verwandte lineare Tetrapyrrole. Angew. Chem. 95, 670 (1983).CrossRefGoogle Scholar
  37. [34]
    H. Scheer: Biliproteine. Angew. Chem. 93, 230 (1981).CrossRefGoogle Scholar
  38. [35]
    W. Rüdiger: Phytochrome: the Chromophore and Photoconversion. Photobiochem. Photobiophys. Suppl., 217 (1987).Google Scholar
  39. [36a]
    T. Schirmer, W. Bode, R. Hurer: Refined Three-Dimensional Structures of Two Cyanobacterial C-Phycocyanins at 2.1 and 2.5 A Resolution. J. Mol. Biol. 196, 677 (1987).CrossRefGoogle Scholar
  40. [36b]
    S. P. A. Fodor, J. C. Lagarias, R. A. Mathies: Resonance Raman Spectra of the Pr-Form of Phytochrome. Photochem. Photobiol. 48, 129 (1988).CrossRefGoogle Scholar
  41. [37]
    T. Sugimoto, E. Ito, H. Suzuki: Interpretation of the „Dichroic Orientation“ of Phytochrome. Photochem. Photobiol. 46, 517 (1987).CrossRefGoogle Scholar
  42. [38]
    M.-M. Cordonnier: Recent Advances in the Study of the Protein Moiety of Phytochrome. Photobiochem. Photobiophys. Suppl., 229 (1987).Google Scholar
  43. [39]
    J. Wendler: Untersuchung photochemischer und photophysikalischer Primärprozesse von Gallenfarbstoffen. Pikosekundenspektroskopie an Biliproteinen und Modellchromophoren. Promotionsarbeit MPI für Strahlenchemie/Universität Dortmund, 1984.Google Scholar
  44. [40]
    A.R. Holzwarth, J. Wendler, W. Haenel: Time-Resolved Picosecond Fluorescence Spectra of the Antenna Chlorophylls in Morelia vulgaris. Resolution of PS I Fluorescence. Biochim. Biophys. Acta 807, 155 (1985).CrossRefGoogle Scholar
  45. [41]
    G. W. Suter, A. R. Holzwarth, P. Klein-Bölting, E. Bittersmann, W. Stempfle: On the Simultaneous Analysis of Time-Resolved Spectra: Statistical Error of Decay Times and Amplitudes. Chem. Phys. Im Druck (1989).Google Scholar
  46. [42]
    K. Heihoff, S. E. Braslavsky: Triplet Lifetime Determination by Laser-Induced Optoacoustic Spectroscopy. Benzophenone Revisited. Chem. Phys. Lett. 131, 183 (1986).ADSCrossRefGoogle Scholar
  47. [43]
    K. Schaffner, S. E. Braslavsky, A. R. Holzwarth: Recent Advances in the Photophysics and Photochemistry of Small, Large, and Native Oat Phytochromes. In: [1c], S. 367.Google Scholar
  48. [44]
    B. P. Ruzsicska, A. R. Holzwarth, J. Wendler, S. E. Braslavsky, K. Schaffner: Photophysics and Photochemistry of Degraded and Native Phytochrome. In: R. V. Bensasson, G. Join, E. J. Land, T. G. Truscott(Hrsg.), Primary Photoprocesses in Biology and Medicine. NATO ASI Series, Series A, Life Sciences Bd. 85, Plenum Press, New York 1985, S. 89.Google Scholar
  49. [45a]
    A. R. Holzwarth, J. Wendler, B. P. Ruzsicska, S. E. Braslavsky, K. Schaffner: Picosecond Time-Resolved and Stationary Fluorescence of Oat Phytochrome Highly Enriched in the Native 124 kDa Protein. Biochim. Biophys. Acta 791, 265 (1984).CrossRefGoogle Scholar
  50. [45b]
    C. G. Colombano, S. E. Braslavsky, A. R. Holzwarth, K. Schaffner: Fluorescence Yields of 124-kDa Pr Phytochrome from Oat Upon Excitation within Different Absorption Bands. Photochem. Photobiol, im Druck (1989).Google Scholar
  51. [46]
    H. Brock, B. P. Ruzsicska, T. Arai, W. Schlamann, A. R. Holzwarth, S. E. Braslavsky, K. Schaffner: Fluorescence Lifetimes and Relative Quantum Yields of 124-Kilodalton Oat Phytochrome in H2O and D20 Solutions. Biochemistry 26, 1412 (1987).CrossRefGoogle Scholar
  52. [47]
    P.-S. Song, Q. Chae, D. A. Lightner, W. R. Briggs, D. Hopkins: Fluorescence Characteristics of Phytochrome and Biliverdins. J. Am. Chem. Soc. 95, 7892 (1973).CrossRefGoogle Scholar
  53. [48]
    J. Wendler, A.R. Holzwarth, S. E. Braslavsky, K. Schaffner: Wavelength-Resolved Fluorescence Decay and Fluorescence Quantum Yield of Large Phytochrome from Oat Shoots. Biochim. Biophys. Acta 786, 213 (1984).CrossRefGoogle Scholar
  54. [49]
    K. Heihoff, S.E. Braslavsky, K. Schaffner: Study of 124-Kilodalton Oat Phytochrome Photoconversions in Vitro with Laser-Induced Optoacoustic Spectroscopy. Biochemistry 26, 1422 (1987).CrossRefGoogle Scholar
  55. [50]
    M. Jabben, K. Heihoff, S. E. Braslavsky, K. Schaffner: Studies on Phytochrome Photoconversions in Vitro with Laser-Induced Optoacoustic Spectroscopy. Photochem. Photobiol. 40, 361 (1984).CrossRefGoogle Scholar
  56. [51]
    R. D. Vierstra, P. H. Quail: Photochemistry of 124-Kilodalton Phytochrome in vitro. Plant Physiol. 72, 264 (1983).CrossRefGoogle Scholar
  57. [52]
    L. H. Pratt: Photochemistry of High Molecular Weight Phytochrome in vitro. Photochem. Photobiol. 22, 33 (1975).CrossRefGoogle Scholar
  58. [53]
    A.R. Holzwarth, S. E. Braslavsky, S. Culshaw, K. Schaffner: The Blue Anomalous Emission of Large and Small Phytochrome. Photochem. Photobiol. 36, 581 (1982).CrossRefGoogle Scholar
  59. [54]
    G. Hermann, B. Kirchhof, K. J. Appenroth, E. Müller: Fluorescence Emission and Fluorescence Excitation Spectra of Large Phytochrome Measured in Dependence on the Excitation and the Emission Wavelength. Biochem. Physiol. Pflanz. 178, 177 (1983).Google Scholar
  60. [55]
    P. Eilfeld, W. Rüdiger: Absorption Spectra of Phytochrome Intermediates. Z. Naturforsch. 40c, 109 (1985).Google Scholar
  61. [56]
    H. Linschitz, V. Kasche, W. L. Butler, H. W. Siegelman: The Kinetics of Phytochrome Conversion. J. Biol. Chem. 241, 3395 (1966).Google Scholar
  62. [57]
    L. H. Pratt, W. L. Butler: The Temperature Dependence of Phytochrome Transformations. Photochem. Photobiol. 11, 361 (1970).CrossRefGoogle Scholar
  63. [58]
    S. E. Braslavsky, J. I. Matthews, H. J. Herbert, J. DE Kok, C. J. P. Spruit, K. Schaffner: Characterization of a Microsecond Intermediate in the Laser Flash Photolysis of Small Phytochrome from Oat. Photochem. Photobiol 31, 417 (1980).CrossRefGoogle Scholar
  64. [59]
    B. P. Ruzsicsxa, S. E. Braslavsky, K. Schaffner: The Kinetics of the Early Stages of the Phytochrome Phototransformations Pr Pfr. A Comparative Study of Small (60 kDalton) and Native (124 kDalton) Phytochromes from Oat. Photochem. Photobiol 41, 681 (1985).CrossRefGoogle Scholar
  65. [60]
    P. E Aramendia, B. P. Ruzicsxa, S. E. Braslavsky, K. Schaffner: Laser Flash Photolysis of 124-Kilodalton Oat Phytochrome in H2O and D2O Solutions: Formation and Decay of the I7pp Intermediates. Biochemistry 26, 1418 (1987).CrossRefGoogle Scholar
  66. [61]
    M. Jabben, S. E. Braslavsky, K. Schaffner: Laser-Induced Optoacoustic Spectroscopy (OAS) of Phytochrome in-vitro. J. Phys., Colloq. 44 C6, 389 (1983).CrossRefGoogle Scholar
  67. [62]
    C. J. P. Spruit, R. E. Kendrick, R. J. Cooke: Phytochrome Intermediates I. Freeze-Dried Tissue. Planta 127, 121 (1975).CrossRefGoogle Scholar
  68. [63]
    H. Linschitz, V. Kasche: Kinetics of Phytochrome Conversion: Multiple Pathways in the Pr to Pfr Reaction, as Studied by Double-Flash Technique. Proc. Natl. Acad. Sci USA 58, 1059 (1967).ADSCrossRefGoogle Scholar
  69. [64]
    Y. Shimazaki, Y. Indue, K. T. Yamamoto, M. Furuya: Phototransformation of the Red-LightAbsorbing Form of Undegraded Pea Phytochrome by Laser Flash Excitation. Plant Cell Physiol. 21, 1619 (1980).Google Scholar
  70. [65]
    M.-M. Cordonnier, P. Mathis, L.H. Pratt: Phototransformation Kinetics of Undegraded Oat and Pea Phytochrome Initiated by Laser Flash Excitation of the Red-Absorbing Form. Photochem. Photobiol. 34, 733 (1981).Google Scholar
  71. [66]
    Y. Inoue, K. Konomi, M. Furuya: Phototransformation of the Far-Red Light-Absorbing Form of Large Pea Phytochrome by Laser Flash Excitation. Plant Cell Physiol. 23, 731 (1982).Google Scholar
  72. [67]
    L. H. Pratt, Y. Shimazaki, Y. Inoue, M. Furuya: Analysis of Phototransformation Intermediates in the Pathway from the Red-Absorbing to the Far-Red-Absorbing Form of Avena Phytochrome by a Multichannel Transient Spectrum Analyzer. Photochem. Photobiol. 36, 471 (1982).CrossRefGoogle Scholar
  73. [68]
    M. Furuya: Molecular Properties of Phytochrome. Phil. Trans. R. Soc. Lond. B303, 361 (1983).Google Scholar
  74. [69]
    L. H. Pratt, Y. Inoue, M. Furuya: Photoactivation of Transient Intermediates in the Pathway from the Red-Absorbing to the Far-Red-Absorbing Form of Avena Phytochrome as Observed by a Double-Flash Transient-Spectrum Analyzer. Photochem. Photobiol. 39, 241 (1984).CrossRefGoogle Scholar
  75. [70]
    Y. Inoue, M. Furuya: Phototransformation of the Red-Light-Absorbing Form to the Far-Red Light-Absorbing Form of Phytochrome in Pea Epicotyl Tissue Measured by a Multichannel Transient Spectrum Analyzer. Plant Cell Physiol. 26, 813 (1985).Google Scholar
  76. [71]
    P. Eilfeld, P. Eilfeld, W. Rüdiger: On the Primary Photoprocess of 124-kDalton Phytochrome. Photochem. Photobiol. 44, 761 (1986).CrossRefGoogle Scholar
  77. [72]
    R. Scheuerlein, S E Braslavsky: Induction of Seed Germination in Lactuca sativa L. by Nanosecond Dye Laser Pulses. Photochem. Photobiol. 42, 173 (1985).CrossRefGoogle Scholar
  78. [73]
    R. Scheuerlein, S. E. Braslavsky: Induction of Chloroplast Movement in the Alga Mougeotia by Polarized Nanosecond Dye Laser Pulses. Photochem. Photobiol. 46, 525 (1987).CrossRefGoogle Scholar
  79. [74]
    S. Malkin, D. Cahen: Photoacoustic Spectroscopy and Radiant Energy Conversion: Theory of the Effect with Special Emphasis on Photosynthesis. Photochem. Photobiol. 29, 803 (1979).CrossRefGoogle Scholar
  80. [75]
    M. Krieg, P. E. Aramendia,S. E. Braslavsky, K. Schaffner: 124-kDa Phytochrome in Model Membrane Systems: Studies of the I700 Intermediates with the Protein Covalently Bound to Preformed Liposomes. Photochem. Photobiol. 47, 305 (1988).CrossRefGoogle Scholar
  81. [76]
    C.G. Colombano, S. E. Braslavsky, A.R. Holzwarth, K. Schaffner: Unveröffentlichte Resultate.Google Scholar
  82. [77]
    T.-R. Hahn, P.-S. Song, P. H. Quail, R. D. Vierstra: Tetranitromethane Oxidation of Phytochrome Chromophore as a Function of Spectral Form and Molecular Weight. Plant Physiol. 74, 755 (1984).CrossRefGoogle Scholar
  83. [78]
    D. W. Mccurdy, L. H. Pratt: Immunogold Electron Microscopy of Phytochrome in Avena: Identification of Intracellular Sites Responsible for Phytochrome Sequestering and Enhanced Pelletability. J. Cell Biol. 103, 2541 (1986).CrossRefGoogle Scholar
  84. [79]
    B. S. Serlin, S. J. Roux: Light-Induced Import of the Chromoprotein, Phytochrome, into Mitochondria. Biochim. Biophys. Acta 848, 372 (1986).CrossRefGoogle Scholar
  85. [80]
    M. Krieg, S. E. Braslavsky, K. Schaffner: 124-kDa Phytochrome in Model Membrane Systems: Association Studies and Covalent Binding to Preformed Liposomes. Photochem. Photobiol. 47, 311 (1988).CrossRefGoogle Scholar
  86. [81]
    G. Valduga, C. Bonazzola, O. Wolff, S. E. Braslavsky, K. Schaffner: Unveröffentlichte Resultate. yGoogle Scholar
  87. [82]
    A. R. Holzwarth, J. Wendler, K. Schaffner, V. Sundström, A. Sandström, T. Gillbro: Picosecond Kinetics of Excited State Relaxation in a Tetrapyrrole Pigment. In: T. Doust, M. A. West (Hrsg.), Picosecond Chemistry and Biology. Science Reviews, Northwood 1983, S. 82.Google Scholar
  88. [83]
    A. R. Holzwarth, J. Wendler, K. Schaffner, V. Sundström, A. Sandström. T. Gillbro: Phytochrome Models, Part VIII. Picosecond Kinetics of Excited State Relaxation in Biliverdin Dimethyl Ester. IsraelJ. Chem. 23, 223 (1983).Google Scholar
  89. [84]
    D.-K. Moon, G.-S. Jeen, P.-S. Song: The Effect of Deuterium Oxide on the Fluorescence and Phototransformation of 124 kDalton Phytochrome. Photochem. Photobiol. 42, 633 (1985).CrossRefGoogle Scholar
  90. [85]
    H. Kwart: Temperature Dependence of the Primary Kinetic Hydrogen Isotope Effect as a Mechanistic Criterion. Acc. Chem. Res. 15, 401 (1982).CrossRefGoogle Scholar

Copyright information

© Westdeutscher Verlag GmbH Opladen 1988

Authors and Affiliations

  • Kurt Schaffner
    • 1
  1. 1.Mülheim a. d. RuhrDeutschland

Personalised recommendations