Advertisement

Literatur

  • Egon Buhr
  • Rüdiger Haupt
  • Hans Kremer
Part of the Forschungsbericht des Landes Nordrhein-Westfalen book series (FOLANW, volume 2544)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Schwiedeßen, H.: Die Wärmetechnik des Arbeitsraumes brennstoffbeheizter Industrieöfen, ihre Theorie und deren praktische Anwendung 6 Folgen, Technische Mitteilungen, Heft 2, 6, 7, 10 (1962)Google Scholar
  2. Schwiedeßen, H.: Die Wärmetechnik des Arbeitsraumes brennstoffbeheizter Industrieöfen, ihre Theorie und deren praktische Anwendung 6 Folgen, Technische Mitteilungen, Heft 10, 11 (1963)Google Scholar
  3. [2]
    Zeldovich, Y.B. und Frank-Kamenetzki, D.A.: Zhur. Fiz. Khim. 12, 100 (1938)Google Scholar
  4. [3]
    Spalding, D.B.: The Combustion of Liquid Fuels 4th Symposium on Combustion, pp. 847–864, Williams + Wilkins, Baltimore, 1953Google Scholar
  5. [4]
    Fay, J.A. and Ridell, F.R.: Theory of stagnation point heat transfer in dissociated air J. Aero. Sci. 25, 73–86 (1958)Google Scholar
  6. [5]
    Kremer, H.: Zur Ausbreitung inhomogener turbulenter Freistrahlen und turbulenter Diffusionsflammen Diss. Karlsruhe, 1964Google Scholar
  7. [6]
    Kremer, H.: Strömung und Mischung in frei brennenden Diffusionsflammen VDI-Berichte Nr. 95, 1966Google Scholar
  8. [7]
    Kremer, H.: Mischung in freien turbulenten Gasstrahlen mit ungleichförmigen symmetrischen Verteilungen von Impuls-, Wärme-und Treibgasmassenstromdichten am Düsenaustritt Gaswärme, Bd. 15, 1966, Nr. 1, S. 3–13Google Scholar
  9. Kremer, H.: Mischung in freien turbulenten Gasstrahlen mit ungleichförmigen symmetrischen Verteilungen von Impuls-, Wärme-und Treibgasmassenstromdichten am Düsenaustritt Gaswärme, Bd. 15, 1966, Nr. 2, S. 39–49Google Scholar
  10. [8]
    Schlichting, H.: Grenzschicht-Theorie 1965, Verlag G. Braun, KarlsruheGoogle Scholar
  11. [9]
    Homann, F.: Der Einfluß großer Zähigkeit bei der Strömung um den Zylinder und um die Kugel ZAMM 16, 153–164 (1936)Google Scholar
  12. [10]
    Prandtl, L.: Zur Berechnung der Grenzschichten ZAMM 18, S. 77–82 (1938)Google Scholar
  13. [11]
    Szablewski, W.: Über den turbulenten Austausch in turbulenten Parallelströmungen Wiss. Z. Techn. Univers. Dresden 16 (1967), H. 4, S. 1231–1235Google Scholar
  14. 12]
    v. Karman, Th. Mechanische Ähnlichkeit und Turbulenz Nachr. Ges. Wiss. Göttingen, Math. Phys. Klasse 58 (1930)Google Scholar
  15. [13]
    Frank-Kamenetzki, D.A. Stoff- und Wärmeübertragung in der chemischen Kinetik 1959, Springer-Verlag, BerlinGoogle Scholar
  16. [14]
    Kestin, J. and Richardson, P.D.: Heat Transfer Across Turbulent, Incompressible Boundary Layers Int. J. Heat Mass Transfer, Vol. 6, pp. 147–189, Pergamon Press 1963, Great BritainGoogle Scholar
  17. [15]
    Jost, W.: Explosions- und Verbrennungsvorgânge in Gasen Springer-Verlag, Berlin 1939Google Scholar
  18. [16]
    Fristrom, R.M. and Westenberg, A.A.: Flame Structure Mc Graw-Hill Book Company, New York 1965Google Scholar
  19. 17]
    Zeegers, P.J.T.: Recombination of Radicals and Related Effects in Flames Diss. Utrecht, 1966Google Scholar
  20. [18]
    Sibulkin, M.: Heat Transfer Near the Forward Stagnation Point of a Body of Revolution J. Aeronautical Sei., Aug. 1952, S. 570–571Google Scholar
  21. [19]
    Rosner, D.E.: Similitude Treatment of Hypersonic Stagnation Heat Transfer ARS Journal, S. 215–216, March 1959Google Scholar
  22. [20]
    Lees, L.: Laminar heat transfer over blunt-nosed bodies at hypersonic speeds Jet Propulsion 26, 259 (1956)Google Scholar
  23. [21]
    Goulard, R.J.: On Catalytic Recombination Rates in Hypersonic Stagnation Heat Transfer Jet Propulsion 28, S. 737–745 (1958)Google Scholar
  24. [22]
    Scala, S.M.: Hypersonic Stagnation Point Heat Transfer to Surfaces Having Finite Catalytic Efficiency Proceedings of the 3. U.S. National Congress of Applied Mechanics, New York, 1958, S. 799–806Google Scholar
  25. [23]
    Butler, J.N. and Brokaw, R.: Thermal Conductivity of Gas Mixtures in Chemical Equilibrium J. Chem. Phys. 26, No. 6, S. 1636 (1957)CrossRefGoogle Scholar
  26. [24]
    Hirschfelder, J.O.: Heat Transfer in Chemically Reacting Gas Mixtures University of Wisconsin, Rpt. No. WIS-ONR-18 (1956)Google Scholar
  27. [25]
    Hirschfelder, J.O.: Heat Conductivity in Polyatomic, Electronically Exited, or Chemically Reacting Mixtures Part Ills 6. Symposium on Combustion, Rheinhold Publishing Co., New York, 351 (1957)Google Scholar
  28. [26]
    Nernst, W.: Chemisches Gleichgewicht und Temperaturgefälle Festschrift, Ludwig Boltzmann gewidmet, S. 904–915 (1904)Google Scholar
  29. [27]
    Langmuir, J.: The Dissociation of Hydrogen into Atoms J. Am. Chem. Soc. 34, S. 860 (1912)CrossRefGoogle Scholar
  30. [28]
    Schotte, W.: Heat Transfer to a Gas-Phase Chemical Reaction Industrial and Engineering Chemistry 50, No. 4, S. 683–690 (1958)Google Scholar
  31. [29]
    Hansen, C.F.: Heat Diffusion in Gases, Including Effects of Chemical Reaction ARS Journal 30, No. 10, S. 942–946 (1960)Google Scholar
  32. [30]
    Rosner, D.E.: Effects of Diffusion and Chemical Reaction on Convective Heat Transfer ARS Journal, S. 114–115, January 1960Google Scholar
  33. [31]
    Lees, L.: Convective Heat Transfer with Mass Addition and Chemical Reactions Combustion and Propulsion, 3. Agard Colloquium Pergamon Press, New York, S. 451–499 (1959)Google Scholar
  34. [32]
    Reynolds, W.C., Kays, W.M. and Kline, S.J.: A Summary of Experiments on Turbulent Heat Transfer from a Nonisothermal Flat Plat J. Heat Transfer, Nov. 1960, S. 341–348Google Scholar
  35. [33]
    Kestin, J.: Effect of Free-Stream Turbulence in: Irvine, T.F. and Hartnett, J.P.: Advances in Heat Transfer, S. 1–97, Vol. 3, Academic Press, New York, 1966Google Scholar
  36. [34]
    van Driest, E.R. Convective Heat Transfer in Gases in: Lin, C.C.: Turbulent Flows and Heat Transfer Princeton University Press, 1959Google Scholar
  37. [35]
    Eckert, E.R.G.: Wärme- und Stoffaustausch Springer-Verlag, Berlin, 1966Google Scholar
  38. [36]
    Korobkin, I. Laminar Heat Transfer Characteristics of a Hemisphere for the Mach Number Range 1,9 to 4,9 NAVORD Rep. 3841, U.S. Naval Ord. Lab. (White Oak, Md.), Oct. 10, 1954Google Scholar
  39. [37]
    Kaplan, C. The Flow of an Compressible Fluid Past a Sphere NACA TN 762, 1940Google Scholar
  40. [38]
    Giedt, W.H., Cobb, L.L. and Russ, E.J.: Effect of Hydrogen Recombination on Turbulent Flow Heat Transfer ASME-Publication, P.N. 60-WA-256, New York, 1960Google Scholar
  41. [39]
    Spalding, D.B.: Heat Transfer from Chemically Reacting Gases in: Ibele, W.: Modern Developments in Heat Transfer, 1963, Academic Press, New York and LondonGoogle Scholar
  42. [40]
    Eckert, E.R.G.: Survey of Boundary Layer Heat Transfer at High Velocities and High Temperatures MADC Technical Report 59–624, Minnesota, 1960Google Scholar
  43. [41]
    Rosner, D.E.: Similitude Treatment of Hypersonic Stagnation Heat Transfer ARS Journal, S. 215–216, March 1959Google Scholar
  44. [42]
    Brown, R.D.: A Comparison of the Theoretical and Experimental Stagnation-Point Heat Transfer in an Arc-Heated Subsonic Stream, NASA, Technical Note D-1927Google Scholar
  45. [43]
    Snedeker, R.S. and Donaldson, C.: Experiments on Free and Impinging Underexpanded Jets from a Convergent Nozzle ARAP-Report No. 63, Princeton, N.J., 1964Google Scholar
  46. [44]
    Comfort, E.H., O’Connor, T.J. and Cass, L.A.: Heat Transfer Resulting from the Normal Impingement of a Turbulent High Temperature Jet on an Infinitely Large Flat Plate in: Saad, M.A. and Miller, J.A.: Proceedings of the 1966 Heat Transfer and Fluid Mechanics Institute, Stanford University Press, 1966Google Scholar
  47. [45]
    Curtiss, H.A. and Pneuman, G.W.: Experimental Determination of Stagnation Point Velocity Gradient on a Right Circular Cylinder in a Subsonic Free Jet RAD Techn. Memo. 2-TM-58–106, AVCO Res. and Advanced Dev. Div., Oct. 9, 1958Google Scholar
  48. [46]
    Baehr, Hartmann, Pohl und Schomäcker: Thermodynamisehe Funktionen idealer Gase für Temperaturen bis 6.000 °K Springer-Verlag, Berlin, 1968Google Scholar
  49. [47]
    Hilsenrath, J. et al.: Tables of Thermal Properties of Gases National Bureau of Standards Circular 564 (1955)Google Scholar
  50. [48]
    Leyhe, E.W. and Howell, R. Recalculation Procedure for Thermodynamic, Transport, and Flow Properties of the Combustion Products of a Hydro-carbon Fuel Mixture Burned in Air with Results for C2H-Air and CH-Air Mixtures NASA Technical Note D-914, 1962Google Scholar
  51. [49]
    Svehla, R.A.: Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures NASA Technical Report R-132, 1962Google Scholar
  52. [50]
    Wilke, C.R.: Development of a Useful Viscosity Equation for Mixtures J. Chem. Phys. 18, S. 517–519 (1950)CrossRefGoogle Scholar
  53. [51]
    Hirschfelder, J.O., Curtiss, Ch.F. and Bird, R.B.: Molecular Theory of Gases and Liquids London, New York 1954, Wiley a. Sons, Chapman u. HallGoogle Scholar
  54. [52]
    Mason, E.A. and Saxena, S.C.: Approximate Formular for the Thermal Conductivity of Gas Mixtures Phys. Fluids, 1, S. 361–369 (1958)CrossRefGoogle Scholar
  55. [53]
    Wilke, C.R.: Diffusional Properties of Multicomponet Gases Chem. Eng. Prog. 46, S. 95–104 (1950)Google Scholar
  56. [54]
    Andrussow, L.: Über die Diffusion in Gasen, Teil 1 Z. Elektrochem. 54 (1950), Nr. 7, S. 566–571Google Scholar
  57. [55]
    Andrussow, L.: Über die Diffusion in Gasen, Teil 2 Z. Elektrochem. 55 (1951), Nr. 1, S. 51–53Google Scholar
  58. [56]
    Wilke, C.R. and Lee, C.Y.: Estimation of Diffusion Coefficients for Gases and Vapors Ind. Eng. Chem. 47, S. 1253–1257 (1955)Google Scholar
  59. [57]
    Perry, J.H. et al.: Chemical Engineers 1 Handbook 4. Edition, Mc Graw-Hill Book Company, Inc., New York, 1963Google Scholar
  60. [58]
    Yun, K.S. and Maxon, E.A.: Collision Integrals for the Transport Properties of Dissociating Air at High Temperatures Phys. Fluids, Vol 5, No. 4, S. 380–386 (1962)CrossRefGoogle Scholar
  61. [59]
    Cookson, R.A. and Kilham, J.K.: Energy Transfer from Hydrogen-Air-Flames 9. Symposium on Combustion, S. 257–263, Academic Press 1963Google Scholar
  62. [60]
    Kilham, J.K. and Dunham, P.G.: Energy Transfer from Carbon-Monoxide Flames 11. Symposium on Combustion, S. 899–905, The Combustion Institute -of Pittsburgh, 1967Google Scholar
  63. [61]
    Buhr, E.: Verfahren zur Messung des konvektiven Wärmeüberganges in Flammen gaswärme international, Bd. 17, S. 60, Febr. 1968Google Scholar
  64. [62]
    Alvermann, W. und Stottmann, P.: Temperaturmessungen mit Thermoelementen in Verbrennungsgasen Forschungsbericht 64–18, Deutsche Luft- und Raumfahrt, DFL, Juli 1964Google Scholar
  65. [63]
    Berkenbusch, F.: Zur Messung von Flammentemperaturen durch Thermoelemente, insbesondere über die Temperatur der Bunsenflamme Wied. Ann. 67 (1899), S. 649Google Scholar
  66. [64]
    Bonne, U., Grewer, Th. und Wagner, H.G.: Messungen in der Reaktionszone von Wasserstoff- Sauerstoff-und Methan-Sauerstoff-Flammen Zeitschrift für Physikalische Chemie, Neue Folge, Bd. 26, S. 93–110 (1960)CrossRefGoogle Scholar
  67. [65]
    Kremer, H.: Die Berechnung der Länge von Erdgasflammen gaswärme international, Bd. 16, Nr. 2 (1967)Google Scholar
  68. [66]
    Perry, K.P.: Heat Transfer by Convection from a Hot Gas Jet to a Plane Surface, Proc. Inst., Mech. Engineers, 168, H. 30, 1954, S. 775–780CrossRefGoogle Scholar
  69. [67]
    Schack, A.: Der industrielle Wärmeübergang 5. Auflage, Verlag Stahleisen, Düsseldorf, 1957Google Scholar
  70. [68]
    Skunca, I.: Gesamtstrahlung der Verbrennungsgase von Einzelgasen bei verschiedener Luftzahl, verschiedenen Schichtdicken und verschiedener Temperatur Arbeitsblatt Nr. 133, gaswärme international, Jan. 1965Google Scholar
  71. [69]
    Cookson, R.A., Dunham, P.G. and Kilham, J.K.: Stagnation Point Heat Flow Meter J. Sei. Instrum. (1965), Vol. 42, S. 260–262CrossRefGoogle Scholar
  72. [70]
    Leuckel, W. und Brand, Y.: Verfahren und Geräte zur Messung von Flammeneigenschaften Archiv Eisenhüttenwesen (1968), 39. Jahrg., Heft 2, S. 119–128Google Scholar
  73. [71]
    Brokaw, R.S.: The Lewis Number in: Masi, J.F. and Tsai, D.H.: Progress in International Research on Thermodynamic and Transport Properties, ASME-Papers, Academic Press, New York, 1962Google Scholar
  74. [72]
    Steffensen, R.J. A FORTRAN-IV-Programm for Thermochemical Calculations Involving the Elements Al, B, BE, C, F, H, LJ, MG, N Doctor-Thesis, Purdue University, Ph. D. 1966, Engineering, mechanical, University Microfilms, Inc., Ann Arbor, MichiganGoogle Scholar

Copyright information

© Westdeutscher Verlag GmbH, Opladen 1976

Authors and Affiliations

  • Egon Buhr
    • 1
  • Rüdiger Haupt
    • 1
  • Hans Kremer
    • 1
  1. 1.Gaswärmeinstitut e. V.EssenDeutschland

Personalised recommendations