An Introduction to Grid Generation Using the Multiblock Approach

  • N. P. Weatherill
Part of the Notes on Numerical Fluid Mechanics (NNFM) book series (NNFM, volume 44)


This introductory paper presents a tutorial on grid generation using the multiblock approach, highlights some of the key areas in its practical implementation and reviews the areas of work addressed by the BRITEEURAM EUROMESH project.


Grid Generation Block Boundary Mesh Topology Adjacent Block Cartesian Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith R. E. (Ed.)’ Numerical Grid Generation’, NASA Conference Publication, CP2166, 1980.Google Scholar
  2. 2.
    Eiseman P. R. ‘Grid generation for fluid mechanics computation’, Annual Review of Fluid Mechanics, Vol. 17, pp 487–522, 1985.CrossRefGoogle Scholar
  3. 3.
    Hauser J. and Taylor C (Eds) ‘Numerical grid generation’, Pineridge Press, Swansea, 1986.Google Scholar
  4. 4.
    Thompson J. F. and Steger J.F (Eds.) Three Dimensional Grid Generation for Complex Configurations - Recent Progress, AGARD-AG-309,1988.Google Scholar
  5. 5.
    Sengupta, S.(Eds.)’Numerical Grid Generation in Computational Fluid Dynamics’, Pineridge Press, Swansea, 1988.Google Scholar
  6. 6.
    Arcilla, A.S., Hauser, J. Eiseman, P.R. and Thompson J. F. (Eds.)’Numerical Grid Generation in Computational Fluid Dynamics and related Fields’, North-Holland, Amsterdam, 1991.Google Scholar
  7. 7.
    Applications of Mesh Generation to Complex 3-D Configurations’, AGARD Conference Proceedings No. 464, May 1989.Google Scholar
  8. 8.
    Winslow A. M.,’Numerical solution of the quasi-linear Poisson’s equation in a nonuniform triangle mesh’, J. Comp. Phys., Vol. 1, p149–172, 1967.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Thompson J. F., Thames, F. and Mastin W.,’ Automatic numerical grid generation of body-fitted curvilinear coordinate system of field containing any number of arbitrary 2dimensional bodies’, J. Comput. Phys, 15: 299–319, 1974.zbMATHCrossRefGoogle Scholar
  10. 10.
    Gordon W. N. and Hall C. A. ’ Constriction of curvilinear coordinate systems and applications to mesh generation’, Int. J. Num. Mthds in Eng, Vol. 7, pp 461–477, 1973.zbMATHCrossRefGoogle Scholar
  11. 11.
    Eiseman P. R. ‘A multi-surface method of coordinate generation’, J. Comp. Phys, Vol. 33. No. 1, pp 118–150, 1979.CrossRefGoogle Scholar
  12. 12.
    L-E Eriksson, ‘Generation of boundary-conforming grids around wing-body configurations using transfinite interpolation’, AIAA Journal, Vol. 20, No. 10, p13131320, 1982.Google Scholar
  13. 13.
    Eiseman P. R.’ Coordinate generation with precise control over mesh properties’, J. Comp. Phys., Vol. 47, No. 3 pp 331–351, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    L-E Eriksson, ‘Practical three-dimensional mesh generation using transfinite interpolation’, SIAM J. Sci. Stat. Comput., Vol. 6, No. 3, pp 712–741, July 1985.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Eiseman P. R. ’ A control point form of algebraic grid generation’, Int. J. Num. Mthds in Fluids, Vol. 8, pp 1165–1181, 1988.CrossRefGoogle Scholar
  16. 16.
    Brackbill J. U. and Saltzman J. S ’ Adaptive zoning for singular problems in two dimensions’ J. Comp. Phys., 46, 342, 1982.CrossRefGoogle Scholar
  17. 17.
    Thompson J. F., Warsi, C. W. Mastin, Numerical grid generation: Foundations and applications, North-Holland, 1985.Google Scholar
  18. 18.
    Thomas P. D. and Middlecoff J. F.’ Direct control of the grid point distribution in meshes generated by elliptic equations’, AIAA J. 18: 652–656, 1980.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Roberts A. ‘Automatic topology generation and generalised B-spline mapping’, in Numerical Grid Generation, (Ed) J. F. Thompson, ( North Holland, Amsterdam ), 1982.Google Scholar
  20. 20.
    Weatherill N. P. and Forsey C. R., ‘Grid generation and flow calculations for aircraft geometries’, J. of Aircraft, Vol. 22, N. 10, p855–860, October 1985.CrossRefGoogle Scholar
  21. 21.
    Thompson J. F., ‘A general 3-dimensional elliptic grid generation system on a composite block structure’, Computer Methods in Applied Mechanics and Engineering, 64, p377411, 1987.Google Scholar
  22. 22.
    Coleman, R. M. ’ NUGGET: A program for three-dimensional grid generation’, DTRC Report DTNSRDC - 87036, Sept. 1987.Google Scholar
  23. 23.
    Boerstoel J. W. ‘Numerical grid generation in 3-dimensional Euler flow simulation’, In Numerical methods in fluid dynamics’, (Eds) K. W. Morton and M. J. Baines, Oxford University Press, 1988.Google Scholar
  24. 24.
    Thompson J. F. ‘A composite grid generation code for general 3D regions - the EAGLE Code’, AIAA Journal, Vol. 26, N. 3, pp 271, March 1988.CrossRefGoogle Scholar
  25. 25.
    Shaw, J. A., Georgala J. M. and Weatherill N. P., ‘The construction of component-adaptive grids for aerodynamic geometries’, Proc. of Int. Conf. on Numerical Grid Generation in CFD, Ed. Sengupta, Hauser, Eiseman, Thompson. Pub. Pineridge Press, Swansea, UK, 1988.Google Scholar
  26. 26.
    Seibert W., ‘A graphic-interactive program system to generate composite grids for general configurations’, in Proc. of Int. Conf. on Numerical Grid Generation in CFD, Ed. Sengupta, Hauser, Eiseman, Thompson. Pub. Pineridge Press, Swansea, UK, 1988.Google Scholar
  27. 27.
    Whitfield D. L. ’ Unsteady Euler solutions on dynamic blocked grids for complex configurations’, in Applications of Mesh Generation to Complex 3-D Configurations’, AGARD Conference Proceedings No. 464, May 1989.Google Scholar
  28. 28.
    Shaw J. A. and Weatherill ‘Automatic topology generation for aircraft geometries’, To appear, Applied Mathematics and Computation, 1992.Google Scholar
  29. 29.
    Allwright, S. E. ‘Techniques in multiblock domain decomposition and surface grid generation’, in Numerical Grid Generation in CFD. (Proceedings of the Second International Conference), Pineridge Press, Swansea, UK, 1988 )Google Scholar
  30. 30.
    Thompson J. F.’ Review on the state of the art of adaptive grids’, AIAA Paper 84–1606, 1984.Google Scholar
  31. 31.
    Nakahashi K. and Deiwert G. S.’ A practical adaptive-grid method for complex fluid-flow problems’ NASA TM 85989, June 1984.Google Scholar
  32. 32.
    Hyun Jin Kim and Thompson J. F.’ Three dimensional adaptive grid generation on a composite block grid’, AIAA Paper 88–0311, 1988.Google Scholar
  33. 33.
    Shephard M. S. and Weatherill N. P. (Eds.)’Adaptive meshing’, Special Issue of Int. J. Num. Mthds in Eng., Vol.32 No. 4, 1991.Google Scholar
  34. 34.
    Dannenhoffer J. F. ’ A comparison of adaptive-grid redistribution and embedding for steady transonic flows’, Int. J. Num. Mthds in Eng., Vol. 32 No. 4, pp 651–653, 1991.CrossRefGoogle Scholar
  35. 35.
    Demkowicz L., Oden J. T., Rachowicz W. and Hardy O. ’ An h-p Taylor Galerkin finite element method for compressible Euler equations’, to appear Computer Methods Appl. Mech. Eng..Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1993

Authors and Affiliations

  • N. P. Weatherill
    • 1
  1. 1.Institute for Numerical Methods in Engineering, Department of Civil EngineeringUniversity College of SwanseaSwanseaUK

Personalised recommendations