Skip to main content

Part of the book series: Notes on Numerical Fluid Mechanics ((NNFM,volume 24))

Summary

For the solution of some surface gravity water wave problems a Eulerian method is given as a system of 2N ordinary differential equations where the moving boundary is described by means of N “Eulerian” points. Part of a stability analysis of the system has been carried out with respect to equilibrium solutions, periodic solutions, and numerical solutions. Numerical experiments with the system have not disclosed unprovoked saw-tooth instabilities, which have plagued some other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, G. R., Meiron, D.I., Orzag, S.A.: “Generalized vortex methods for free-surface flow problems”, Jour. Fluid Mech. 123 (1982) pp. 477–501.

    Article  MATH  Google Scholar 

  2. Braun, M.: “Differential equations and their applications”, Springer-Verlag, New York et al. 2nd Edition (1978) 13 + 518 pp. (Applied Mathematical Sciences 15).

    Google Scholar 

  3. Chan, R. K.-C., Street, R. L.: “A computer study of finite-amplitude water waves”, Jour. Computational Phys. 6 (1970) pp. 68–94.

    Article  MATH  Google Scholar 

  4. Channell, P., Scovel, J. C.: “Symplectic integration algorithms”, Preprint, Los Alamos National Laboratory, Los Alamos, NM, U.S.A.

    Google Scholar 

  5. Cheng, S. I., Lu, Y.: “An Eulerian method for transient nonlinear free surface wave problems”, Jour. Computational Phys. 62 (1986) pp. 429–440.

    Article  MathSciNet  MATH  Google Scholar 

  6. Christiansen, S.: “An elementary analysis of saw-tooth instabilities on a moving boundary for surface gravity water waves”, Zeit. Angew. Math. Mech. (ZAMM) (Sonderheft, GAMM-Tagung, Stuttgart 1987) 68 (1988) pp. T–T

    Google Scholar 

  7. Cronin, J.: “Differential eguations, introduction and qualitative theory”, Marcel Dekker, Inc., New York & Basel (1980) 8 + 372 pp.

    Google Scholar 

  8. Dold, J. W., Peregrine, D. H.: “Steep unsteady water waves: An efficient computational scheme”, Proceedings 19th International Conference on Coastal Engineering, Houston, 1 (1984) pp. 955–967. American Society of Civil Engineers, New York.

    Google Scholar 

  9. Fenton, J. D., Rienecker, M. M.: “A Fourier method for solving nonlinear water-wave problems: application to solitary-wave interactions”, Jour. Fluid Mech. 118 (1982) pp. 411–443.

    Article  MathSciNet  MATH  Google Scholar 

  10. Franklin, J. N.: “Matrix theory”, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1968) 12 + 292 pp.

    MATH  Google Scholar 

  11. Golub, G. H., Wilkinson, J. H.: “Ill-conditioned eigensystems and the computation of the Jordan canonical form”, SIAM Review 18 (1976) pp. 578–619.

    Article  MathSciNet  MATH  Google Scholar 

  12. Haken, H.: “Advanced synergetics”, Springer-Verlag, Berlin et al. (1983) 15 + 356 pp.

    Book  MATH  Google Scholar 

  13. Hale, J. K.: “Ordinary differential equations”, Wiley-Interscience, New York et al. (1969) 16 + 332 pp.

    MATH  Google Scholar 

  14. Hassard, B. D., Kazarinoff, N. D., Wan, Y.-H.: “Theory and applications of Hopf bifurcation”, Cambridge University Press, Cambridge et al. (London Mathematical Society Lecture Note Series 41) (1981) 6 + 311 pp.

    MATH  Google Scholar 

  15. Haussling, H. J.: “Two-dimensional linear and nonlinear stern waves”, Jour. Fluid Mech. 97 (1980) pp. 759–769.

    Article  MathSciNet  MATH  Google Scholar 

  16. Haussling, H. J., Coleman, R. M.: “Nonlinear water waves generated by an accelerated circular cylinder”, Jour. Fluid Mech. 92 (1979) pp. 767–781.

    Article  MATH  Google Scholar 

  17. Howard, J. E., MacKay, R. S.: “Linear stability of symplectic maps”, Jour. Mathematical Phys. 28 (1987) pp. 1036–1051.

    Article  MathSciNet  MATH  Google Scholar 

  18. Hume, III E. C., Brown, R. A., Deen, W. M.: “Comparison of boundary and finite element methods for moving-boundary problems governed by a potential”, Internat. Jour. Numerical Methods Engineering 21 (1985) pp. 1295–1314.

    Article  MathSciNet  MATH  Google Scholar 

  19. IMSL Library (International Mathematical & Statistical Libraries, Inc., 7500 Bellaire Blvd., Houston, Texas 77036, U.S.A.), Edition 9.2, November 1984: “DGEAR (Differential equation solver — variable order Adams predictor corrector method or Gears method)”.

    Google Scholar 

  20. Idem: “EIGRF (Eigenvalues and (optionally) eigenvectors of a real general matrix in full storage mode)”.

    Google Scholar 

  21. Idem: “ICSPLN (Cubic spline interpolation with periodic end conditions)”.

    Google Scholar 

  22. Idem: “LEQT2F (Linear equation solution — full storage mode — high accuracy solution)”.

    Google Scholar 

  23. Jordan, D. W., Smith, P.: “Nonlinear ordinary differential equations”, Clarendon Press, Oxford (1977) 8 + 360 pp.

    Google Scholar 

  24. Kawahara, M., Miwa, T.: “Finite element analysis of wave motion”, Internat. Jour. Numerical Methods Engineering 20. (1984) pp. 1193–1210.

    Article  MATH  Google Scholar 

  25. Kagström, B., Ruhe, A.: “An algorithm for numerical computation of the Jordan normal form of a complex matrix”, ACM Trans. Math. Software 6 (1980) pp. 398–419.

    Article  MathSciNet  MATH  Google Scholar 

  26. Kagström, B., Ruhe, A.: “Algorithm 560. JNF, an algorithm for numerical computation of the Jordan normal form of a complex matrix”, ACM Trans. Math. Software 6 (1980) pp. 437–443.

    Article  MATH  Google Scholar 

  27. Lamb, H.: “Hydrodynamics”, Dover Publications, New York, 6th Ed. (1945) 15 + 738 pp.

    Google Scholar 

  28. Lambert, J. D.: “Computational methods in ordinary differential equations”, John Wiley & Sons, Chichester et al. (1973) 15 + 278 pp.

    Google Scholar 

  29. Lichtenberg, A. J., Lieberman, M. A.: “Regular and stochastic motion”, Springer-Verlag, New York et al. (Applied Mathematical Sciences 38) (1983) 21 + 499 pp.

    Google Scholar 

  30. Liggett, J. A.: “Hydrodynamics calculations using boundary elements”, pp. 889–896 in: Kawai, T. (ed.): Finite element flow analysis, Proceedings of the Fourth International Symposium on Finite Element Methods in Flow Problems, Chuo University, Tokyo, 26–29 July, 1982; University of Tokyo Press, North-Holland Publishing Company, Amsterdam et al. (1982) 16 + 1096 pp.

    Google Scholar 

  31. Liu, P. L.-F., Liggett, J. A.: “Applications of boundary element methods to problems of water waves”, pp. 37–67 (Chapter 3) in: Banerjee, P. K., Shaw, R. P. (eds.): Developments in boundary element methods — 2, Applied Science Publishers, London, New Jersey (1982) 10 + 288 pp.

    Google Scholar 

  32. Liu, P. L.-F., Liggett, J. A.: “Boundary element formulations and solutions for some non-linear water wave problems”, pp. 171–190 (Chapter 7) in: Banerjee, P. K., Mukherjee, S. (eds.): Developments in boundary element methods — 3, Elsevier Applied Science Publishers, London, New York (1984) 11 + 313 pp.

    Google Scholar 

  33. Longuet-Higgins, M. S.: “The instabilities of gravity waves of finite amplitude in deep water, I. Superharmonics”, Proc. Roy. Soc. London A 360 (1978) pp. 471–488.

    MathSciNet  Google Scholar 

  34. Longuet-Higgins, M. S., Cokelet, E. D.: “The deformation of steep surface waves on water, I. A numerical method of computation”, Proc. Roy. Soc. London A 350 (1976) pp. 1–26.

    MathSciNet  Google Scholar 

  35. MacKay, R. S.: “Stability of equilibria of Hamiltonian systems”, pp. 254–270 in: Sarkar, S. (ed.): Nonlinear phenomena and chaos, Adam Hilger Ltd., Bristol & Boston (1986) 11 + 336 pp.

    Google Scholar 

  36. MacKay, R. S., Saffman, P. G.: “Stability of water waves”, Proc. Roy. Soc. London A 406 (1986) pp. 115–125.

    MathSciNet  Google Scholar 

  37. Nakayama, T.: “Boundary element analysis of nonlinear water wave problems”, Internat. Jour. Numerical Methods Engineering 19 (1983) pp. 953–970.

    Article  MATH  Google Scholar 

  38. Nakayama, T., Washizu, K.: “The boundary element method applied to the analysis of two-dimensional nonlinear sloshing problems”, Internat. Jour. Numerical Methods Engineering 17 (1981) pp. 1631–1646.

    Article  MATH  Google Scholar 

  39. New, A. L., Mclver, P., Peregrine, D. H.: “Computations of overturning waves”, Jour. Fluid Mech. 150 (1985) pp. 233–251.

    Article  MATH  Google Scholar 

  40. Noble, B.: “Applied linear algebra”, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1969) 16+523 pp.

    MATH  Google Scholar 

  41. Ohring, S.: “Nonlinear water wave generation using the method of lines”, Jour. Computational Phys. 39 (1981) pp. 137–163.

    Article  MATH  Google Scholar 

  42. Prosperetti, A., Jacobs, J. W.: “Numerical method for potential flows with a free surface”, Jour. Computational Phys. 51 (1983) pp. 365–386.

    Article  MATH  Google Scholar 

  43. Roberts, A. J.: “A stable and accurate numerical method to calculate the motion of a sharp interface between fluids”, IMA Jour. App. Math. 31 (1983) pp. 13–35.

    Article  MATH  Google Scholar 

  44. Saffman, P. G.: “The superharmonic instability of finite-amplitude water waves”, Jour. Fluid Mech. 159 (1985) pp. 169–174.

    Article  MathSciNet  MATH  Google Scholar 

  45. Saffman, P. G., Yuen, H. C.: “A note on numerical computations of large amplitude standing waves”, Jour. Fluid Mech. 95 (1979) pp. 707–715.

    Article  MathSciNet  MATH  Google Scholar 

  46. Salmon, J. R., Liu, P. L-F., Liggett, J. A.: “Integral equation method for linear water waves”, Jour. Hydraulics Division ASCE 106 HY12 (1980) pp. 1995–2010.

    Google Scholar 

  47. Sand, J., Østerby, O.: “Regions of absolute stability”, Computer Science Department, Aarhus University, Denmark, DAIMI PB-102 (September 1979) 2 + 57 pp.

    Google Scholar 

  48. Schuster, H. G.: “Deterministic chaos”, Physik-Verlag, Gmbh., Weinheim FRG (1984) 23 + 220 pp.

    MATH  Google Scholar 

  49. Sethian, J.: “The design of algorithms for hypersurfaces moving with curvature-dependent speed”, pp. 282–287 in: Book of abstracts, Hyperbolic Problems, Second International Conference, RWTH, Aachen, March 14–18, 1988. Aachen (1988) 12 + 357 pp.

    Google Scholar 

  50. Soh, W. K.: “A numerical method for non-linear water waves”, Computers and Fluids 12 (1984) pp. 133–143.

    Article  MATH  Google Scholar 

  51. Stoker, J. J.: “Water waves”, Interscience Publishers, Inc., New York (1957) 28 + 567 pp.

    Google Scholar 

  52. Tadjbakhsh, I., Keller, J. B.: “Standing surface waves of finite amplitude”, Jour. Fluid Mech. 8 (1960) pp. 442–451.

    Article  MathSciNet  MATH  Google Scholar 

  53. Thomsen, P. G., Zlatev, Z.: “Two-parameter families of predictor-corrector methods for the solution of ordinary differential equations”, BIT, Nordisk Tidskrift. Inform. 19 (1979) pp. 503–517.

    MathSciNet  MATH  Google Scholar 

  54. Vinje, T., Brevig, P.: “Numerical simulation of breaking waves”, Advances Water Res. 4 (1981) pp. 77–82.

    Article  Google Scholar 

  55. Wehausen, J. W., Laitone, E. V.: “Surface waves”, pp. 446–778 in: Flügge, S. (ed.): Handbuch der Physik, IX. Strömungsmechanik III, Springer-Verlag, Berlin et-al. (1960) 7 + 815 pp.

    Google Scholar 

  56. Wolf, A., Swift, J. B., Swinney, H. L., Vastano, J. A.: “Determining Lyapunov exponents from a time series”, Physica D 16 (1985) pp. 285–317.

    Article  MathSciNet  MATH  Google Scholar 

  57. Yeung, R. W.: “Numerical methods in free-surface flows”, Annual Rev. Fluid Mech. 14 (1982) pp. 395–442.

    Article  MathSciNet  Google Scholar 

  58. Young, D. M., Gregory, R. T.: “A survey of numerical mathematics, I + II”, Addison-Wesley Publishing Company, Reading, Massachusetts (1973) 51 + 63 + 1099 pp.

    Google Scholar 

  59. Zufiria, J. A., Saffmann, P. G.: “The superharmonic instability of finite-amplitude surface waves on water of finite depth”, Studies Appl. Math. 74 (1986) pp. 259–266.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig

About this chapter

Cite this chapter

Christiansen, S. (1989). A Stability Analysis of a Eulerian Method for Some Surface Gravity Wave Problems. In: Ballmann, J., Jeltsch, R. (eds) Nonlinear Hyperbolic Equations — Theory, Computation Methods, and Applications. Notes on Numerical Fluid Mechanics, vol 24. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-87869-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-87869-4_8

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-528-08098-3

  • Online ISBN: 978-3-322-87869-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics