Skip to main content

Part of the book series: Notes on Numerical Fluid Mechanics ((NNFM,volume 24))

Abstract

The purpose of this paper is to present a synthesis of our recent studies related to the design of multi-dimensional non-oscillatory schemes, applying to non-structured finite-element simplicial meshes (triangles, tetrahedra). While the direct utilization of 1-D concepts may produce robust and accurate schemes when applied to non-distorted structured meshes, it cannot when non-structured triangulations are to be used. The subject of the paper is to study the adaptation of the so-called TVD methods to that context. TVD methods have been derived for the design of hybrid first-order/second-order accurate schemes which present in simplified cases monotonicity properties (see, for example, the review [2]). A various collection of first-order accurate schemes can be used, they are derived from an artificial viscosity model or from an approximate Riemann solver. However, the main feature in the design is the choice of the second-order accurate scheme; this choice can rely either on central differencing or on upwind differencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ANGRAND F., DERVIEUX A., BOULARD V., PERIAUX J., VUAYASUN-DARAM G., Transonic Euler simulations by means of Finite Element explicit schemes, AIAA Paper 83–1924 (1983).

    Google Scholar 

  2. ARMINJON P., Some aspects of high resolution numerical methods for hyperbolic systems of conservation laws with applications to gas dynamics, INRIA Report 520, (1986).

    Google Scholar 

  3. ARMINJON P., DERVIEUX A., Schémas TVD en Eléments Finis triangulaires, in preparation.

    Google Scholar 

  4. BABA K., TABATA M., On a conservative upwind finite element scheme for convective diffusion equations, RAIRO, Vol.l5, 1, pp 3–25(1981).

    MathSciNet  Google Scholar 

  5. DAVIS S.F., TVD finite difference schemes and artificial viscosity, ICASE Report 84–20, (1984).

    Google Scholar 

  6. DERVIEUX A., FEZOUI L., STEVE H., PERIAUX J., STOUFFLET B., Low storage implicit upwind-FEM schemes for the Euler equations, IC11NMFD, Williams-burgh(USA), 1988.

    Google Scholar 

  7. DESIDERI J.A., Iterative convergence of a class of implicit upwind schemes, to appear.

    Google Scholar 

  8. DONE A J., A Taylor-Galerkin method for Convective transport problems, Int. J. Numer. Meths. Eng. 20(1984) 101–120

    Article  Google Scholar 

  9. FEZOUI F., Résolution des équations d’Euler par un schéma de van Leer en éléments finis, INRIA Report 358 (1985).

    Google Scholar 

  10. MORGAN K., LOEHNER R., JONES J.R., PERAIRE J., VAHDATI M., Finite element FCT for the Euler and Navier-Stokes equations, Proc. of the 6th Int. Sympos. Finite Element Methods in Flow Problems, Antibes (1986).

    Google Scholar 

  11. PARROT A.K., CHRISTIE M.A., FCT applied to the 2-D Finite Element solution of tracer transport by a single phase flow in a porous medium, Proc. of the ICFD Conf. on Numerical Methods in Fluid Dynamics, Reading (1985).

    Google Scholar 

  12. OSHER S., CHAKRAVARTHY S., Upwind schemes and boundary conditions with applications to Euler equations in general geometries, J. of Comp. Physics, Vol. 50, 3, 447–81 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  13. SELMIN V., Finite Element solution of hyperbolic equations, II, two-dimensional case, INRIA Report 708 (1987).

    Google Scholar 

  14. STOUFFLET B., PERIAUX J., FEZOUI F., DERVIEUX A., Numerical simulation of 3-D Hypersonic Euler Flows around space Vehicles using adapted finite Elements, AIAA Paper 87–0560 (1987).

    Google Scholar 

  15. VAN LEER B., Computational methods for ideal compressible flow, von Karman Institute for Fluid Dynamics, Lecture Series 1983–04.

    Google Scholar 

  16. VIJAYASUNDARAM G., Transonic flow simulations using an upstream centered scheme of Godunov in Finite Element, J. Comp. Phys., vol.63, 416–433(1986).

    Article  MathSciNet  MATH  Google Scholar 

  17. YEE H., Upwind and Symmetric Shock-capturing schemes, NASA TM 89464 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig

About this chapter

Cite this chapter

Arminjon, P., Dervieux, A., Fezoui, L., Steve, H., Stoufflet, B. (1989). Non-Oscillatory Schemes for Multidimensional Euler Calculations with Unstructured Grids. In: Ballmann, J., Jeltsch, R. (eds) Nonlinear Hyperbolic Equations — Theory, Computation Methods, and Applications. Notes on Numerical Fluid Mechanics, vol 24. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-87869-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-87869-4_1

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-528-08098-3

  • Online ISBN: 978-3-322-87869-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics