Advertisement

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 007C1007C.
    Mirels, H.: Attenuation in a shock tube due to unsteady-boundary-layer action NACA Report 1333 (1957).Google Scholar
  2. 007C2007C.
    Mirels, H. and Braun, W.H.: Nonuniformities in shock-tube flow due to unsteady-boundary-layer action. NACA TN 4021 (1957).Google Scholar
  3. 007C3007C.
    Trimpi, R.L. and Cohen, N.B.: A theory for predicting the flow of real gases in shock-tubes with experimental verification. NACA TN 3375 (1955).Google Scholar
  4. 007C4007C.
    Bartknecht, W.: Explosionen. Springer Verlag, Berlin, 1978.Google Scholar
  5. 007C5007C.
    Rudinger, G. and Chang, A.: Analysis of nonsteady two-phase flow. Phys. Fluids 7, 1747–1754 (1964).MathSciNetzbMATHCrossRefGoogle Scholar
  6. 007C6007C.
    Demmig, F.: Charakteristikenverfahren erster Ordnung für die numerische Berechnung des Kolbenproblems bei Zweiphasenströmungen. Private Mitteilung Sept. 1981.Google Scholar
  7. 007C7007C.
    Demmig, F.: Programm TWO FLOTON und Erläuterungen zum Programm. Private Mitteilung Sept. 1981.Google Scholar
  8. 007C8007C.
    Schmitt, K.: Numerische Berechnung einer Gas-Partikel Stoßrohrströmung mit Hilfe des Charakteristikenverfahrens. Studienarbeit RWTH Aachen, Stoßwellenlabor (1982).Google Scholar
  9. 007C9007C.
    Miura, H. and Glass, I.I.: On a dusty-gas shock tube. UTIAS Report No. 250 (1981).Google Scholar
  10. 007C10007C.
    Miura, H. and Glass, I.I.: On the passage of a shock wave through a dusty-gas layer. UTIAS Report No. 252 (1982).Google Scholar
  11. 007C11007C.
    Grönig, H. und Lange, H.: Einfluß von Rohrverzweigungen auf Stoßwellen in staubhaltigen Gasen. Forschungsbericht des Landes NRW Nr. 3067 Fachgruppe Umwelt/Verkehr (1981).Google Scholar
  12. 007C12007C.
    Smeets, G. und George, A.: Laser-Doppler-Velozimeter mit einem Michelson-Spektrometer. ISL Bericht R 109/80 (1980).Google Scholar
  13. 007C13007C.
    Knudsen, J.G. and Katz, D.L.: Fluid Mechanics and Heat Transfer. McGraw-Hill Book Company, New York, 511 (1958).Google Scholar
  14. 007C14007C.
    Marble, F.E.: Dynamics of Dusty Gases. Annual Review of Fluid Mechanics, Vol. 2 (1970).Google Scholar
  15. 007C15007C.
    Rudinger, G.: Effective Drag Coefficient for Gas-Particle Flow in Shock Tubes. Transactions of the ASME, J. of Basic Engineering 165-172 (1970).Google Scholar
  16. 007C16007C.
    Ingebo, R.D.: Drag Coefficient for Droplets and Solid Spheres in Clouds Accelerating in Air Streams. NACA TN 3762 (1956).Google Scholar
  17. 007C17007C.
    Outa, E., Tajima, K. and Suzuki, S.: Cross-Sectional Concentration of Particles During Shock Process Propagating Through a Gas-Particle Mixture in a Shock Tube. Treanor, Ch. E. and Hall, J.G. (Eds.) Shock Tubes and Waves. Proceedings of the 13th Symposium on Shock Tubes and Waves. State University of New York Press, Albany N.Y. pp 655 (1982).Google Scholar
  18. 007C18007C.
    Singleton, R.E.: Fluid Mechanics of Gas-Solid Particle Flow in Boundary Layer. Ph.D. Thesis, Caltech, Pasadena, California (1964).Google Scholar
  19. 007C19007C.
    Otterman, B.: Laminar Bounday Layer Flows of Two-Phase-Suspension. Ph.D. Thesis, State University of New York at Stony Brook (1968).Google Scholar
  20. 007C20007C.
    Soo, S.L.: Boundary-Layer Motion of a Gas-Solid Suspension. Project Squid Technical Report ILL-3-P (1961).Google Scholar
  21. 007C21007C.
    Saffman, P.G.: The Lift on a Small Sphere in a Slow Shear Flow. J. Fluid Mech. 22, 385–400 (1965).zbMATHCrossRefGoogle Scholar
  22. 007C22007C.
    Hamed, A. and Tabakoff, W.: Analysis of Nonequilibrium Particulate Flow. AIAA Paper No. 73-687 (1973).Google Scholar
  23. 007C23007C.
    Hamed, A. and Tabakoff, W.: A Numerical Method for the Solution of Particulate Flow Equations. AIAA Paper No. 74-561 (1974).Google Scholar
  24. 007C24007C.
    Crank, S. and Nicolson, P. A Practical Method for Numerical Evaluation of Solutions of Partial Differential Equations of the Heat Conduction Type. Proc. Lamb. Phil. Soc. Vol. 43, 50–67 (1947).MathSciNetzbMATHCrossRefGoogle Scholar
  25. 007C25007C.
    Marsal, D.: Die numerische Lösung partieller Differentialgleichungen. Wissenschaftsverlag, Bibliographisches Institut Mannheim (1976).Google Scholar
  26. 007C26007C.
    Mitchell, A.R. and Griffiths, D.F.: The Finite Difference Method in Partial Differential Equations. John Wiley & Sons, New York (1980).zbMATHGoogle Scholar
  27. 007C27007C.
    Gooderum, P.B.: An Experimental Study of the Turbulent Boundary Layer on a Shock-Tube Wall. NACA TN 4243 (1958).Google Scholar
  28. 007C28007C.
    Martin, W.A.: An Experimental Study of the Boundary Layer Behind a Moving Plane Shock Wave. UTIA Report No. 47 (1957).Google Scholar
  29. 007C29007C.
    Sand, P.: Entmischungseffekte in nicht-sedimentierenden Suspensionen runder Teilchen. Dissertation RWTH Aachen (1963).Google Scholar

Copyright information

© Westdeutscher Verlag GmbH, Opladen 1983

Authors and Affiliations

  • Martin Sommerfeld
    • 1
  • Hans Grönig
    • 1
  1. 1.Stoßwellenlabor des Instituts für Luft- und RaumfahrtRhein.-Westf. Techn. Hochschule AachenDeutschland

Personalised recommendations