Skip to main content

Ionisierende Strahlung und Radioaktivität

  • Chapter
Praktische Physik
  • 537 Accesses

Zusammenfassung

Ionisation nennt man den Prozeß, bei dem durch Strahlung ein Elektron oder mehrere Elektronen von einem Atom oder Molekül in Gasen oder von einem gebundenen Zustand in einem flüssigen oder festen Körper abgelöst werden. Dabei wird Energie von der Strahlung auf Materie übertragen. Andere Prozesse, bei denen eine Energieübertragung stattfindet, sind der Stoß, die Anregung von Kernen, Atomen und Molekülen sowie die Änderung chemischer Bindungen und Wertigkeiten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur zu 7.1

  • Alm Carlsson, G. (1985): Theoretical basis for dosimetry. In: Kase K. R. u.a. (Hrsg.): The Dosimetry of Ionizing Radiation. Vol. I, 1–75, London: Academic Press.

    Google Scholar 

  • Alm Carlsson, G.; Carlsson, C. A. (1982): Quantities and concepts used in radiation dosimetry. Int. J. Appl. Radiat. Isot. 33, 953–965.

    Google Scholar 

  • Boutillon, M.; Perroche-Roux, A.M. (1987): Réévaluation of the W value for electrons in dry air. Phys. Med. Biol. 32, 213–219.

    Google Scholar 

  • Chilton, A. B. (1978): A note on the fluence concept. Health Phys. 34, 715–716.

    Google Scholar 

  • DIN 6814, Teil 2, 4 (1980): Begriffe und Benennungen in der radiologischen Technik. Teil 2: Strahlenphysik; Teil 4: Radioaktivität. Berlin: Beuth-Verlag.

    Google Scholar 

  • Evans, R. D. (1955): The Atomic Nucleus. New York, London: McGraw Hill.

    MATH  Google Scholar 

  • ICRU 31 (1979): Average Energy Required to Produce an Ion Pair. ICRU Report 31, Bethesda: ICRU Publ.

    Google Scholar 

  • ICRU 33 (1980): Radiation Quantities and Units. ICRU Report 33, Bethesda: ICRU Publ.

    Google Scholar 

  • NCRP 58 (1985): A Handbook of Radioactivity Measurements Procedures. 2nd Ed., 592 S. National Council on Radiation Protection and Measurements. Washington D.C.

    Google Scholar 

  • Reich, H. (Hrsg.) (1990): Dosimetric ionisierender Strahlung. Stuttgart: Teubner.

    Google Scholar 

  • Rossi, H. H. (1968): Microscopic energy distribution in irradiated matter. In: Attix F. H. u.a. (Hrsg.): Radiation Dosimetry Vol. I, 43–92. London: Academic Press.

    Google Scholar 

  • Seelentag, W. W. u.a. (1979): A catalogue of spectra used for calibration of dosemeters. GSF-Bericht S 560. Neuherberg: GSF.

    Google Scholar 

Literatur zu 7.2

  • Abou Mandour, M.; Harder, D. (1978): Systematic optimization of the double-scatterer system for electron beam field-flattening. Strahlentherapie 154, 328–332.

    Google Scholar 

  • Alberts, W. G.; Matzke, M. (1983): Der zeitliche Verlauf der Quellstärke einer Californium-252-Neutronenquelle. PTB-Mitt. 93, 315–317.

    Google Scholar 

  • Alberts, W. G.; Dietz, E. (1987) Filtered Neutron Beams at the FMRB — Review and Current Status. PTB-FMRB-112, Braunschweig: PTB.

    Google Scholar 

  • Berger, M. J.; Seltzer, S. M. (1970): Bremsstrahlung and photoneutrons from thick tungsten and tantalum targets. Phys. Rev. C2, 621–631.

    Google Scholar 

  • Blanchis, P.; Page, J.; Bouchard, J.; Vandevy ver, M.; Ruaudel-Teixier, A. (1990): Recent developments in the preparation of radioactive sources at LMRI. Nucl. Instr. and Meth. in Phys. Res. A286, 447–452.

    Google Scholar 

  • Blinov, M. V. (1980): Neutron Energy Spectra of Spontaneous Fission Sources. In: Proc. of the IAEA Consultants’ Meeting on Neutron Source Properties. INDC(NDS)-114/GT, 79–106. Wien: IAEA.

    Google Scholar 

  • Boag, J. W. (1984): Dosimetry in a magnetically swept electron beam. Radiotherapy and Oncology 2, 37–40.

    Google Scholar 

  • Brahme, A.; Reistadt, D. (1981): Microtrons for electron and photon radiotherapy. IEEE Trans. Nucl. Sci. NS-28, 1880–1883.

    Google Scholar 

  • Chartier, J. L.; Portal, G.; Roman, D; Duguay, D. (1972): Production de rayonnements monochromatiques intenses. Nucl. Instr. and Meth. 100, 107–119.

    Google Scholar 

  • Chartier, J. L.; Roman, D; Bazoge, A. (1974): Problems of exposure measurement with extended sources: Case of X-ray fluorescence. Nucl. Instr. and Meth. 119, 427–444.

    Google Scholar 

  • Chen, Q. J.; Nielsen, S.P.; Aarkrog, A. (1989): Preparation of thin alpha sources by electrospraying for efficiency calibration purposes. J. Radioanal. Nucl. Chem. Lett. 135, 117–123.

    Google Scholar 

  • Daniel, H. (1974): Beschleuniger. Stuttgart: Teubner.

    Google Scholar 

  • DIN 25425 (1992): Radionuklidlaboratorien. Teil 1: Regeln für die Auslegung. Teil 2: Schutzmaßnahmen beim Umgang mit offenen radioaktiven Stoffen. Berlin: Beuth-Verlag.

    Google Scholar 

  • DIN 25426, Teil 4 (1986): Umschlossene radioaktive Stoffe. Dichtheitsprüfungen während des Umgangs. Berlin: Beuth-Verlag.

    Google Scholar 

  • Drexler, G.; Gossrau, M.; Panzer, W.; Schöfer, H. (1975): A new fluorescence X-ray source. In: Biomedical Dosimetry, Proceedings Symposium Vienna. IAEA-STI/PUB/401, 499–507. Wien: IAEA.

    Google Scholar 

  • Feist, H. (1982): Determination of the absorbed dose to water for high energy photons and electrons by total absorption of electrons in ferrous sulphate solution. Phys. Med. Biol. 27, 1435–1447.

    Google Scholar 

  • Feist, H.; Koep, M.; Reich, H. (1971): A current transformer and gated integrator for measurement of weak currents from pulsed accelerators. Nucl. Instr. Meth. 97, 319–321.

    Google Scholar 

  • Gardner, R. K.; Gray, T. J. (1978): Cross sections for K-shell ionization, X-ray production, or Auger-electron production by ion impact. Atom. Data and Nucl. Data Tables 21, 515–536.

    Google Scholar 

  • Geiger, K. W. (1980): Radioactive Be(α n) and Be(β n) neutron sources. In: Proc. of the IAEA Consultants’ Meeting on Neutron Source Properties. INDC(NDS)-114/GT, 43–77. Wien: IAEA.

    Google Scholar 

  • George, R. E. (1984): Characteristics of an MM 22 medical microton 6 MW photon beam. Med. Phys. 11, 862–865.

    Google Scholar 

  • Hague, J. F.; Jennings, R. E.; Rand, R. E. (1963): A null method for calibrating Faraday cups. Nucl. Instr. Meth. 24, 456–460.

    Google Scholar 

  • Hallden, N. A.; Fisenne, I. M. (1963): Minimizing self absorption in 4πÒ-counting. Int. J. Appl. Rad. Isot. 14, 529–532.

    Google Scholar 

  • Hara, A.; Iwai, S.; Nakamura, T. (1987): Establishment of a Simple Neutron Calibration Field from a Moderated 252Cf Source. Part I. Design and calculation of the simple neutron calibration field. Nucl. Instr. Meth. in Phys. Res. A254, 151–158.

    Google Scholar 

  • Harvey, J. R.; Bending, R. C. (1976): A Neutron Source with an Effective Energy of 0.5 keV. Phys. Med. Biol. 21, 85–97.

    Google Scholar 

  • Hoffmann, E. J.; Phelps, M.E. (1974): Production of monoenergetic X-rays from 8 to 87 keV. Phys. Med. Biol. 19, 19–35.

    Google Scholar 

  • Hubbell, J. H. (1990): Survey of industrial, agricultural, and medical applications of radiometric gauging and process control. J. Res. Natl. Inst. Stand. Technol. 95, 689–699.

    Google Scholar 

  • IAEA (1978): Neutron Cross Sections for Reactor Dosimetry. Technical Document IAEA-208, Vol. I. Wien: IAEA.

    Google Scholar 

  • ICRU 10b (1984): Physical aspects of irradiation. ICRU Report 10b, Washington: ICRU.

    Google Scholar 

  • IEC 1267 (1994): Medical Diagnostic X-ray Equipment — Radiation conditions for use in the determination of characteristics. Genf: IEC.

    Google Scholar 

  • Ing, H.; Cross, W. G. (1975): Spectra and Dosimetry of Neutrons from Moderation of 235U and 252Cf in H2O. Health Phys. 29, 839–851.

    Google Scholar 

  • Ing, H.; Cross, W. G. (1984): Spectral and Dosimetric Characteristics of a D2O-Moderated 252Cf Calibration Facility. Health Phys. 46, 97–106.

    Google Scholar 

  • ISO 4037 (1996): X and β reference radiations for calibrating dosemeters and dose ratemeters and for determining their response as a function of photon energy. Part 1: Characteristics of the radiations and their methods of production. Paris: ISO, AFNOR.

    Google Scholar 

  • ISO 6980 (1984): Reference beta radiations for calibrating dosemeters and doseratemeters and for determining their response as a function of beta radiation energy. Paris: ISO, AFNOR.

    Google Scholar 

  • ISO 8529 (1989): Neutron reference radiations for calibrating neutron-measuring devices used for radiation protection purposes and for determining their response as a function of neutron energy. Genf: ISO.

    Google Scholar 

  • Iwai, S.; Ohkubo, T.; Hara, A.; Nakamura, T. (1987) Establishment of a Simple Neutron Calibration Field using a Moderated 252Cf Source. Part II. Experimental characterization of a simple neutron calibration field. Nucl. Instr. Meth. in Phys. Res. A254, 159–171.

    Google Scholar 

  • Jensen, F. (1965): Technik der Erzeugung von Röntgenstrahlen. In: Handbuch der medizinischen Radiologie, Bd. 1.2, 1–84. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Jetzke, S.; Kluge, H.; Hollnagel, R.; Siebert, B.R.L. (1992): Extended Use of a D2O-Moderated 252Cf Source for the Calibration of Neutron Dosemeters. Radiat. Prot. Dos. 44, 131–134.

    Google Scholar 

  • Karlsson, M.; Nyström, H.; Svensson, H. (1988): The 50 MeV race-track accelerator — a new approach to beam shaping and modulation. In: IAEA Report 760, Vol. 2, 307–320.

    Google Scholar 

  • Karzmark, C.J. (1984): Advances in linear accelerator design for radiotherapy. Med. Phys. 11, 105–128.

    Google Scholar 

  • Kharitonov, I. A. (1994): Analysis of Existing Data and Specification of an Experiment to Determine the 252Cf Half-Life to the Required Degree of Accuracy. INDC (CCP)-362, 1–15. Wien: IAEA.

    Google Scholar 

  • Kathren, R. L.; Rising, F. L.; Larson, H.V. (1971): K-fluorescence X-rays: A multi-use tool for health physics. Health Physics 21, 285–293.

    Google Scholar 

  • Kluge, H.; Weise, K. (1982): The Neutron Energy Spectrum of a 241Am-Be(α,n) Source and Resulting Fluence to Dose Equivalent Conversion Factors. Radiat. Prot. Dosim. 2, 85–93.

    Google Scholar 

  • Knoll, G. F. (1989): Radiation Detection and Measurement. New York, Chichester, Brisbane, Toronto: Wiley.

    Google Scholar 

  • Koch, E. E. (ed.) (1983): Handbook on Synchrotron Radiation, Vol. 1. Amsterdam: North Holland Publ.

    Google Scholar 

  • Koch, H. W.; Motz, J. W. (1959): Bremsstrahlung cross-section formulas and related data. Rev. Mod. Phys. 31, 920–955.

    Google Scholar 

  • Kollath, R. (1962): Teilchenbeschleuniger, 2. Aufl. Braunschweig: Vieweg.

    Google Scholar 

  • Kozlov, A. P.; Shishov, V. A.; Zabrodin, B. V; Regel, A. V. (1982): Application of scattering foil systems for forming large-sized uniform electron therapy fields. Strahlentherapie 158, 432–439.

    Google Scholar 

  • Kretschko; Harder, D.; Pohlit, W. (1962): Absolutmessung der Teilchenflußdichte schneller Elektronen mit einem Faradaykäfig. Nucl. Instr. Meth. 16, 29–36.

    Google Scholar 

  • Kunz, C. (ed.) (1979): Synchrotron Radiation-Techniques and Applications. Topics in Current Physics, Vol. 10. Berlin — Heidelberg — New York: Springer.

    Google Scholar 

  • Lesiecki, H.; Cosack, M.; Schölermann, H. (1987): Monoenergetic neutron fields for the calibration of neutron dosemeters at the accelerator facility of the PTB. PTB-Mitt. 97, 373–376.

    Google Scholar 

  • Liskien, H.; Paulsen, A. (1973): Neutron production cross sections and energies for the reactions T(p,n)3 He, and T(d,n)4 He. Nucl. Data Tab. 11, 569–619.

    Google Scholar 

  • Lorch, E. A. (1973): Neutron Spectra of241 Am/B,241 Am/Be,241 Am/F, 242Crn/Be, 238Pu/13C and 252Cf Isotopic Neutron Sources. Int. J. Appl. Radiat. Isotopes 24, 585–591.

    Google Scholar 

  • Lowenthal, G. C. (1973): Special methods of source preparation. Nucl. Instr. and Meth. 112, 353–357.

    Google Scholar 

  • Lutz, W. R.; Larsen, R. D. (1984): The effect of flattening filter design on quality variations within an 8-MV primary x-ray beam. Med. Phys. 11, 843–845.

    Google Scholar 

  • Mannhart, W. (1987): Evaluation of the 252Cf Fission Neutron Spectrum Between 0 MeV and 20 MeV. In: Proc. Advisory Group Mtg. Properties of Neutron Sources, Leningrad, UdSSR, 1986, IAEA-TECDOC-IO, 158–171. Wien: IAEA.

    Google Scholar 

  • Marion, J. B.; Fowler, J. L. (1960): Fast Neutron Physics, Bd. 1, New York: Interscience Publishers Inc.

    Google Scholar 

  • Merritt, J. S. u.a. (1959): Self-absorption in sources prepared for 4π beta counting. Can. J. Chem. 37, 1109–1114.

    Google Scholar 

  • Mill A. J.; Harvey, J. R. (1980): Reactor-and Accelerator-based Filtered Beams. Proceedings of the IAEA Consultants’ Meeting on Neutron Source Properties. INDC(NDS)-114/GT, 135-200. Wien: IAEA.

    Google Scholar 

  • Mika, N.; Reiß, K. H. (1965): Tabellen zur Röntgendiagnostik. Erlangen: Siemens-Verlag.

    Google Scholar 

  • Müller-Sievers, K.; Riehl, G. (1982): Erste Erfahrungen mit dem Elektronen-Linearbeschleuniger Therac-20-Saturn im klinischen Betrieb. Strahlentherapie 158, 356–361.

    Google Scholar 

  • Nath, R.; Schulz, R. J. (1976): Determination of high-energy x-ray spectra by photoactivation. Med. Phys. 3, 133–141.

    Google Scholar 

  • NCRP (1985): A Handbook of Radioactivity Measurements Procedures; 2nd edition. NCRP Report 58, Bethesda, MD: NCRP.

    Google Scholar 

  • Owen, B. (1972): The beta calibration of radiation survey instruments at protection levels. Phys. Med. Biol. 17, 175–186.

    Google Scholar 

  • Parkinson, W. C; Petersen, J. F.; Duplantis, D. C. (1974): On the optimization of the capacitive beam pickoff. Nucl. Instr. Meth. 117, 605–607.

    Google Scholar 

  • Pate, B. D.; Jaffe, L. (1955): A new material and techniques for the fabrication and measurements of very thin films for use in 47π-counting. Can. J. Chem. 33, 15–23.

    Google Scholar 

  • Pruitt, J. S. (1971): Electron beam current monitoring system. Nucl. Instr. Meth. 92, 285–297.

    Google Scholar 

  • PTB-Prüfregeln (1984): Bd. 16. Therapiedosimeter mit Ionisationskammern für Photonenstrahlung mit Energien unterhalb von 3 MeV. Braunschweig: PTB.

    Google Scholar 

  • Profio, A. E. (1976): Experimental Reactor Physics. New York, London, Sidney, Toronto: Wiley.

    Google Scholar 

  • Reich, H. (Hrsg.) (1990): Dosimetric ionisierender Strahlung. Stuttgart: Teubner.

    Google Scholar 

  • Reimann, R. (1976): Kapazitive Sonde für Phasenmessungen an einem gepulsten Ionenstrahl. Nucl. Instr. Meth. 136, 397–398.

    Google Scholar 

  • RöV (1987): Verordnung über den Schutz vor Schäden durch Röntgenstrahlung (Röntgenverordnung — RöV). Bundesgesetzblatt I 114-133.

    Google Scholar 

  • Schneider, W. (1973): Neutronenmeßtechnik. Berlin, New York: de Gruyter.

    Google Scholar 

  • Schwartz, R. B.; Eisenhauer, C. M. (1980): The Design and Construction of a D2O-Moderated 252Cf Source for Calibrating Neutron Personnel Dosimeters Used at Nuclear Power Reactors. NUREG/CR-1024. Washington: U. S. Nuclear Regulatory Commission.

    Google Scholar 

  • Seelentag, W. W.; Panzer, W.; Drexler, G.; Platz, L.; Santer, F. (1979): A catalogue of spectra used for calibration of dosemeters. GSF-Bericht S 560. München-Neuherberg: GSF.

    Google Scholar 

  • Storm, E.; Lier, D.W.; Israel, H.I. (1974): Photon sources for instrument calibration. Health Physics 26, 179–189.

    Google Scholar 

  • StrlSchV (1989): Verordnung über den Schutz vor Schäden durch ionisierende Strahlen (Strahlenschutzverordnung — StrlSchV). Bundesgesetzblatt, Teil I, Nr. 34, 1321–1376.

    Google Scholar 

  • Svensson, H.; Jonsson, L.; Larsson, L.-G.; Brahme, A.; Lindberg, B.; Reistad, D. (1977): A 22 MeV microtron for radiation therapy. Acta Radiol. Ther. Phys. Biol. 16, 145–156.

    Google Scholar 

  • van der Eijk, W. u.a. (1973): Preparation of thin sources, a review. Nucl. Instr. Meth. 112, 343–351.

    Google Scholar 

  • Wachsmann, F.; Drexler, G. (1976): Kurven und Tabellen für die Radiologie. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Weinhous, M. S.; Meli, J. A. (1984): Determining Pions, the correction factor for recombination losses in an ionization chamber. Med. Phys. 11, 846–849.

    Google Scholar 

  • Wille, K. (1992): Physik der Teilchenbeschleuniger und Synchrontronstrahlungsquellen; eine Einführung. Stuttgart: Teubner.

    Google Scholar 

  • Zill, H.; Ebeling, G. (1980): A Facility for the Integration of Neutron Current Densities while Comparing Neutron Source Strength by Means of a Precision Long Counter. Nucl. Instr. Meth. 174, 491–496.

    Google Scholar 

Literatur zu 7.3

  • Almén, O.; Nielsen, K. O. (1957): Systematic investigation of a magnetic ion source for an electromagnetic isotope separator. Nucl. Instrum. 1, 302–322.

    Google Scholar 

  • Alton, G. D. (1981): Aspects of the Physics, Chemistry and Technology of High Intensity Heavy Ion Sources. Nucl. Instr. and Meth. 189, 15–42 (Z).

    Google Scholar 

  • Alton, G.D.; McConnell, J. W.; Tajima, S.; Nelson, G.J. (1987): Emittance studies of high intensity negative ion sources equipped with continuous surface cylindrical and spherical geometry tungsten ionisers. Nucl. Instr. Meth. B 24/25, 826–833.

    Google Scholar 

  • Alton, G. D.; McConnell, J. W. (1988): The emittances and brightnesses of high-intensity negative ion sources. Nucl. Instr. Meth. A 268, 445.

    Google Scholar 

  • Alton, G. D. (1989): The sputter generation of negative ion beams. Nucl. Instr. Meth. B 37/38, 45–55.

    Google Scholar 

  • Amboss, K. (1981): The Design and Measurement of Space Charge Electron Beams. In: Arianer, J.; Olivier, M. (Hrsg.): II. EBIS Workshop, Saclay — Orsay, 1981, Institut de Physique Nucléaire (Z).

    Google Scholar 

  • von Ardenne, M. (1956): Tabellen der Elektronenphysik, Ionenphysik und Übermikroskopie I und II. Berlin: VEB Deutscher Verlag der Wissenschaften (B).

    Google Scholar 

  • Arianer, J.; Cabrespine, A.; Goldstein, C. (1982): Cryebis, an advanced multicharged ion source. Nucl. Instr. and Meth 193, 401–413.

    Google Scholar 

  • Banford, A. P. (1966): The Transport of Charged Particle Beams. London: Spon (B).

    Google Scholar 

  • Becker, R.; Klein, H.; Schmidt, W. (1972): The electron beam ion source and some possibilities for improvement. IEEE Trans. Nucl. Sci. NS-19, 125–131.

    Google Scholar 

  • Børnstad, T.; Carraz, L.C.; Heinemeier, J.; Ravn, H. L.; Vosicki, B. (1981): Intense beams of radioactive halogens produced by means of surface ionization. Nucl. Instr. and Meth. 186, 307–313.

    Google Scholar 

  • Böhm, D. (1949): Chapt. 3. Minimum ionic kinetic energy for a stable sheath. Chapt. 4. Theoretical considerations regarding minimum pressure for stable arc operation. In: Guthrie, A.; Wakerling, A. K. (Hrsg.): The characteristics of electrical discharges in magnetic fields. New York, Toronto, London: McGraw Hill.

    Google Scholar 

  • Brand, K. (1977): Performance of the reflected beam sputter source. Rev. Physique Appliquée 12, 1453–1457.

    Google Scholar 

  • Brown, I. G. (Hrsg.) (1989): The Physics and Technology of Ion Sources. New York: Wiley (B).

    Google Scholar 

  • Brown, K. L. (1967): A First and Second Order Matrix Theory for the Design of Beam Transport Systems and Charged Particle Spectrometers. Report (Stanford Linear Accelerator) SLAC-75. Erhältlich bei: CFSTI, National Bureau of Standards, US Dept. of Commerce, Springfield, VA.

    Google Scholar 

  • Brown, K. L.; Carey, D. C; Iselin, Ch.; Rothacker, F. (1973): Transport. A Computer Program for Designing Charged Particle Beam Transport Systems. CERN-Report 73-16 (Identisch mit SLAC 91); Slac 91 Appendix. Dieser enthält die Grundlagen zu „Transport“.

    Google Scholar 

  • Davis, R. C. u.a. (1975): Duopigatron II Ion Source. Rev. Sci Inst. 46, 576–581.

    Google Scholar 

  • DiChio, D. u.a. (1974): Use of matrices to represent electron lenses. Matrices for the two-tube electrostatic lens. Rev. Sci. Instr. 45, 566–569.

    Google Scholar 

  • Donets, E. D. (1976): Review of the JINR electron beam sources. IEEE Trans. Nucl. Sci. NS 23, 897–903.

    Google Scholar 

  • El-Kareh, A. B.; El-Kareh, J. C. J. (1970, 1976): Electron Beams, Lenses and Optics. Bd. 1 und Bd. 2. New York u. London: Academic Press (B).

    Google Scholar 

  • Enge, H. A. (1961): Ion focusing properties of a three element quadrupol lens system. Rev. Sci. Instr. 32, 662–665.

    Google Scholar 

  • Forrester, A. Th. (1988): Large Ion Beams, Fundamentals of Generation and Propagation. New York: Wiley (B).

    Google Scholar 

  • Freeman, J. H. (1963): A new ion source for electromagnetic isotope separators. Nucl. Instr. Meth. 22, 306–316.

    Google Scholar 

  • Freisinger, J.; Reineck, S.; Loeb, H. W. (1979): The RF-ion source RIG 10 for intense hydrogen ion beams. J. de Phys. 40, C7, 477–478.

    Google Scholar 

  • Glaser, W. (1952): Grundlagen der Elektronenoptik. Wien: Springer (B).

    MATH  Google Scholar 

  • Glaser, W. (1956): Elektronen-und Ionenoptik. In: Flügge, S. (Hrsg.): Handbuch der Physik, Bd. 33. Berlin: Springer (B).

    Google Scholar 

  • Glavish, H. F. (1981): Magnet Optics for Beam Transport. Nucl. Instr. and Meth. 189, 43–53 (Z).

    Google Scholar 

  • Goebel, D.M.; Crow, J. D.; Forrester, A.T. (1978): Lanthanium Hexaboride hollow cathode for dense plasma production. Rev. Sci. Instr. 49, 469–472.

    Google Scholar 

  • von Goeler, S. (1965): Die Störung des thermischen Gleichgewichtes von schwach ionisierten Cäsiumkontaktplasmen durch Wandverluste. Ann. Physik (Leipzig) 15, 321–347.

    Google Scholar 

  • Green, T. S. (1974): Intense Ion Beams. Rep. Progr. Phys. 37, 1257–1344 (Z).

    Google Scholar 

  • Green, T. S. (1978): Development of high power neutral injectors. Proc. lOth Symp. on Fusion Technology. Padua. Bd. II, S. 873–936. Oxford: Pergamon Press (Z).

    Google Scholar 

  • Harting, E.; Read, F. H. (1976): Electrostatic Lenses. Amsterdam — Oxford — New York: Elsevier (B).

    Google Scholar 

  • Ha wkes, P. W. (1973): Image Processing and Computer-aided Design in Electron Optics. London u. New York: Academic Press (B).

    Google Scholar 

  • Hawkes, P.W. (Ed.) (1982): Properties of Magnetic Electron Lenses. Berlin: Springer (B).

    Google Scholar 

  • Hill, K. J.; Nelson, R. S. (1965): A sputtering ion source. Nucl. Instr. Meth. 165, 15–18.

    Google Scholar 

  • ICIS (1992): 4th International Conference on Ion Sources (ICIS 1991), Bensheim, 30.9.-4. 10. 1991. Rev. Sci. Instr. 63 No. 4.

    Google Scholar 

  • Ioanoviciu, D. (1989): Ion Optics. Adv. Electr. & Electron Physics 73, 1–92.

    Google Scholar 

  • Jahnke-Emde-Lösch (1960): Tafeln höherer Funktionen. Stuttgart: Teubner (B).

    Google Scholar 

  • Jenkins, R. O. (1969): A review of thermionic cathodes. Vacuum 19, 353–359 (Z).

    Google Scholar 

  • Kasper, E. (1982): Field Electron Emission Systems. Adv. Opt. and Electr. Microscopy 8, 207–260 (Z).

    Google Scholar 

  • Keller, J. H. (1981): Beam optics design for Ion Implantation. Nucl. Instr. and Meth. 189, 7–14 (Z).

    Google Scholar 

  • Kirchner, R.; Roeckl, E. (1976): Investigation of gaseous discharge ion sources for isotope separation on line. Nucl. instr. Meth. 133, 187–204.

    Google Scholar 

  • Kreisler, P.; Baumann, H.; Bethge, K. (1985): Study of the space charge potential of ion beams. Nucl. Instr. Meth. A 237, 448–454.

    Google Scholar 

  • Langmuir, I. (1913): The Effect of Space Charge on Thermionic Currents in High Vacuum. Phys. Rev. 2, 450–486.

    Google Scholar 

  • Langmuir, I.; Blodgett, K. (1923): Currents Limited by Space Charge between Coaxial Cylinders. Phys. Rev. 22, 347–356.

    Google Scholar 

  • Langmuir, I.; Blodgett, K. (1924): Currents Limited by Space Charge between Concentric Spheres. Phys. Rev. 24, 49–59.

    Google Scholar 

  • Langmuir, I. (1929): Interaction of Electron and Positive Ion Space Charges in Cathode Sheaths. Phys. Rev. 33, 954–989.

    Google Scholar 

  • Larson, J. D. (1981): Electrostatic Ion Optics and Beam Transport for Ion Implantation. Nucl. Instr. and Meth. 189, 71–91 (Z).

    Google Scholar 

  • Latushinsky, A.; Raiko, V. I. (1975): Studies of the ion source with surface-volume ionization. Nucl. Instr. Meth. 125, 61–66.

    Google Scholar 

  • Lauer, R. (1982): Characteristics of Triode Electron Guns. Adv. Opt. and Electr. Microscopy 8, 137–206 (Z).

    Google Scholar 

  • Lemke, H.; Göddenhenrich, T.; Bochem, H. P.; Hartmann, U.; Heiden, C. (1990): Improved microtips for scanning probe microscopy. Rev. Sci. Instr. 61, 2538–2541.

    Google Scholar 

  • Lempert, G.; Chavet, I. (1976): Practical factors affecting cathode performance in ion sources of the Nier-Bernas type. Nucl. Instr. Meth. 139, 7–12.

    Google Scholar 

  • Lichtenberg, A. J. (1969): Phase Space Dynamics of Particles. New York: Wiley (B).

    MATH  Google Scholar 

  • Middleton, E. (1983): A versatile high intensity ion source. Nucl. Instr. Meth. 214, 139–150.

    Google Scholar 

  • Mlekodaj, R. L.; Spejowski, E.H.; Ritchie, B.G. (1980): A new high temperature ISOL ion source. Nucl. Instr. Meth. 171, 451–455.

    Google Scholar 

  • Nadji, A; Haas, F.; Heng, G.; Müller, Ch.; Rebmeister, R. (1990): The beam emittance of negative ion sources. Nucl. Instr. Meth. A 287, 173–175.

    Google Scholar 

  • Nielsen, K. O. (1987): The development of magnetic ion sources for an electromagnetic ion separator. Nucl. Instrum. 1, 289–301.

    Google Scholar 

  • Orloff, J. (1989): Survey of electron sources for high-resolution microscopy. Ultramicroscopy 28, 88–97.

    Google Scholar 

  • Pierce, J. R. (1954): Theory and Design of Electron Beams. New York: van Nostrand (B).

    Google Scholar 

  • Proceedings (1978–1981): Symposium on Electron, Ion and Photon Technology. 14th: J. Vac. Sci. Technol. 15 (1978), 835-109; 15th: l.e. 16 (1979) 1610-2030; 16th: l.e. 19 (1981) 868-1423.

    Google Scholar 

  • Ray, M. A.; Barnett, S.A.; Greene, J. E. (1989): A multiparameter ion source with adjustable optics to provide well-collimated, high-current-density, low-to-medium-energy ion beams. J. Vac. Sci. Technol. A 7, 125–131.

    Google Scholar 

  • Riemann, K.-U. (1991): The Böhm criterion and sheath formation. J. Phys. D. Appl. Phys. 24, 493–518.

    Google Scholar 

  • Sampayan, S. E.; Frisa, L. E.; King, M. L.; Moore, R.A. (1988): An improved ion source for ion implantation. J. Vac. Technol. B 6, 1066–1072.

    Google Scholar 

  • Septier, A. (Hrsg.) (1967): Focusing of Charged Particles I und II. New York u. London: Academic Press (B).

    Google Scholar 

  • Septier, A. (Hrsg.) (1980, 1983): Applied Charged Particle Optics Part A (1980), Part B (1980), Part C (1983): New York: Academic Press (B).

    Google Scholar 

  • Sidenius, G. (1965): The high temperature hollow cathode ion source. Nucl. Instrum. and Meth. 38, 19–22.

    Google Scholar 

  • van Steenbergen, A. (1966): Evaluation of Particle Beam Phase Space Measurement Techniques. Nucl. Instr. and Meth. 57, 245–253.

    Google Scholar 

  • Steffen, K. G. (1965): High Energy Beam Optics. New York: Interscience (B).

    Google Scholar 

  • Surrey, E.; Holmes, A. J. T. (1990): The effects on ion beam optics of a spherical aberration. Rev. Sci. Instr. 61, 2171–2175.

    Google Scholar 

  • Walcher, W. (1943): Verwendungsmöglichkeiten von Glühanoden zur Isotopentrennung. Z. Physik 121, 604–613.

    Google Scholar 

  • Walcher, W. (1951): Methode zur näherungsweisen Bestimmung von Trägerbahnen in elektrostatischen Linsen unter Berücksichtigung der Raumladung. Z. angew. Physik 3, 189–190.

    Google Scholar 

  • Walcher, W. (1958): General Treatment of Some Problems related to the Design of Modern Isotope Separators. In: Koch, J. (Hrsg.): Electromagnetic Isotope Separators and Applications of Electromagnetically Enriched Isotopes. Amsterdam: North Holland (B).

    Google Scholar 

  • Walcher, W. (1972): Some remarks on emittance and brightness of ion sources and ion beams. In: Proc. 2nd Int. Conf. on Ion Sources. Wien: Stud. Ges. At. Energie.

    Google Scholar 

  • Whealton, J. H. (1981): Ion Extraction and Optics Arithmetic. Nucl. Instr. and Meth. 189, 55–70 (Z).

    Google Scholar 

  • Williams, N. (1977): High current ion source for use on the PR-30 implanter. J. Vac. Sci. Techol. 15, 1076–1079.

    Google Scholar 

  • Wolf, B. H. (1976): Duopigatron Metal Ion Source. Nucl. Instr. and Meth. 139, 13–16.

    Google Scholar 

Literatur zu 7.4

  • Almond, P. R. (1981): Use of a Victoreen 500 electrometer to determine ionization chamber collection efficiencies. Med. Phys. 8, 901–904.

    Google Scholar 

  • Angelini, F. u.a. (1992): A microstrip gas chamber on a silicon substrate. Nucl. Instr. and Meth. A314, 450–454.

    Google Scholar 

  • Apfel, R. E.; Roy, S. C; Lo, Y. C. (1985): Prediction of the minimum neutron energy to nucleate vapor bubbles in superheated liquids. Phys. Rev. A 31, 5, 3194–3198.

    Google Scholar 

  • Attix, F.H.; Roesch, W.C; Tochilin, E. (Hrsg.) (1966–1972): Radiation Dosimetry, Bd. I (1968): Fundamentals. Bd. II (1966): Instrumentation. Bd. III (1969): Sources, Fields, Measurements and Applications, Supplement 1 (1972): Topics in Radiation Dosimetry. New York, London: Academic Press.

    Google Scholar 

  • Attix, F. H. (1984): Determination of Alon und Plon in the new AAPM radiotherapy dosimetry protocol. Med. Phys. 11, 714–716.

    Google Scholar 

  • Barkas, W. H. (1963, 1973): Nuclear Research Emulsions. Bd. I (1963) Techniques and Theory, Bd. II (1973) Particle Behaviour and Emulsion Applications. New York, London: Academic Press.

    Google Scholar 

  • Barthe, J.; Bouvard, G.; Commanay, L. (1975): Measurement of small doses using radiophotoluminescent silver-activated metaphosphate glasses. Health Phys. 19, 213–216.

    Google Scholar 

  • Becker, K.; Scharmann, A. (1975): Einführung in die Festkorperdosimetrie. München: Thiemig-Taschenbuch 56.

    Google Scholar 

  • Beckurts, K. H.; Wirtz, K. (1964): Neutron Physics. Berlin, Heidelberg, New York: Springer.

    MATH  Google Scholar 

  • Bensch, F.; Fleck, C.M. (1968): Neutronenphysikalisches Praktikum. Mannheim: Bibliographisches Inst.

    Google Scholar 

  • Bertolini, G.; Coche, A. (1968): Semiconductor Detectors. Amsterdam: North-Holand.

    Google Scholar 

  • Birks, J. B. (1964): The Theory and Practice of Scintillation Counting. London: Pergamon Press.

    Google Scholar 

  • Boag, J. W.; Currant, J. (1980): Current collection and ionic recombination in small cylindrical ionization chambers exposed to pulsed radiation. Brit. J. Rad. 53, 471–478.

    Google Scholar 

  • Boag, J. W. (1982): The recombination correction for an ionization chamber exposed to pulsed radiation in a “swept beam” technique. I Theory. Phys. Med. Biol. 27, 201–211.

    Google Scholar 

  • Boag, J. W. (1987): Ionization Chambers. In: Kase u. a. (Hrsg.): Bd. 2, 169-243.

    Google Scholar 

  • Bödy, Z. (1987): Standard Monitor Reactions for Neutrons. In: Handbook on Nuclear Activation Data. IAEA Technical Report Series 273, Wien: IAEA.

    Google Scholar 

  • Böhm, J. (1976): A measuring and calibration system for currents down to 10 −17A. Atomkernenergie 27, 139–143.

    Google Scholar 

  • Böhm, J.; Schneider, U. (1986): Review of extrapolation chamber measurements of beta rays and low energy x-rays. Radiat. Prot. Dosim. 14, 193–198.

    Google Scholar 

  • Bueker, H. (1971): Theorie und Praxis der Halbleiter-Detektoren für Kernstrahlung. Berlin: Springer.

    Google Scholar 

  • Burgkhardt, B.; Piesch, E. (1978): The effect of post-irradiation annealing on the fading characteristic of different thermoluminescent materials, Part II — optimal treatment and recommendations. Nucl. Instr. Meth. 155, 299–304.

    Google Scholar 

  • Carlson, A. D. (1977): Instruments for Use of 10B as a Standard. In: NBS, S. 85-92.

    Google Scholar 

  • Carlson, A. D. (1984): Standard Cross-Section Data. Progr. in Nucl. Energy 13, 79–127.

    Google Scholar 

  • Casnati, E. (Hrsg.) (1977): Ionizing Radiation Metrology. Bologna: Editrice Compositori.

    Google Scholar 

  • Chartier, J. L.; Bazoge, A.; Itie, C. (1975): Free-air Ionization Chamber for the Energy Range 12 ke V to 100 keV. Nucl. Instr. Meth. 128, 251–259.

    Google Scholar 

  • Chu, R. D.H. (1981): Problems encountered in the use of plastic and chemical dose meters for plant commissioning. In: High Dose Measurements in Industrial Radiation Processing. IAEA Techn. Rep. Ser. 205, S. 97–100. Wien: International Atomic Energy Agency.

    Google Scholar 

  • De Planque, G.; Gesell, T. F. (1986): Environmental measurements with thermoluminescent dosemeters — trends and issues. Radiat. Prot. Dosim. 17, 193–200.

    Google Scholar 

  • Derikum, K.; Roos, M. (1993): Measurement of saturation correction factors of thimble-type ionization chambers in pulsed photom beams. Phys. Med. Biol. 38, 755–763.

    Google Scholar 

  • Derrien, E.; Edvardson, L. (1977): Experimental Data Base for the 7Li-System. In: NBS, S. 14-29.

    Google Scholar 

  • DIN 5036, Teil 1 (1978): Strahlenphysikalische und lichttechnische Eigenschaften von Materialien: Begriffe für Vorgänge und Medien, Kennzahlen. Berlin: Beuth.

    Google Scholar 

  • DIN 6800 (1980, 1996): Dosismeßverfahren in der radiologischen Technik; Teil 2: Ionisationsdosimetrie (1996); Teil 3: Eisensulfatdosimetrie; Teil 4: Filmdosimetrie; Teil 5: Thermolumineszenz-Dosimetrie; Teil 6: Photolumineszenz-Dosimetrie. Berlin: Beuth.

    Google Scholar 

  • DIN 6816 (1984): Filmdosimetrie nach dem filteranalytischen Verfahren zur Strahlenschutzüberwachung. Berlin: Beuth.

    Google Scholar 

  • DIN 6818 (1988, 1992, 1993): Strahlenschutzdosimeter; Teil 2: Direkt ablesbare Ionisationskammer-Stabdosimeter für Gamma-und Röntgenstrahlen (1992); Teil 4: Tragbare Ionisationskammer-Dosimeter für Gamma-und Röntgenstrahlung (1993); Teil 6: Thermolumineszenz-Dosimetriesysteme (1988). Berlin: Beuth.

    Google Scholar 

  • DIN 6819 (1991): Meßgeräte zur Bestimmung des Flächendosisproduktes in der Röntgendiagnostik — Regeln für die Herstellung. Berlin: Beuth.

    Google Scholar 

  • DIN 6830, Teil 1 (1975): Röntgenfilme zur Verwendung mit Fluoreszenz-Verstärkerfolien in der medizinischen Diagnostik. Berlin: Beuth.

    Google Scholar 

  • DIN 19040, Teil 12 (1979): Begriffe der Photographic Allgemeine Begriffe der Sensitometrie. Berlin: Beuth.

    Google Scholar 

  • DIN 25483 (1987): Verfahren zur Umgebungsüberwachung mit integrierenden Festkörperdosimetern. Berlin: Beuth.

    Google Scholar 

  • Domen, S. R. (1969): A heat-loss-compensated calorimeter and related theorems. J. Res. Nat. Bur. Stand. (U.S.) Sect C 73, 17–20.

    Google Scholar 

  • Domen, S. R. (1982): An absorbed dose water calorimeter: theory, design and performance. J. Res. Nat. Bur. Stand. 87, 211–235.

    Google Scholar 

  • Domen, S. R. (1987): Advances in Calorimetry for Radiation Dosimetry. In: Kase K. R. u.a. (Hrsg.), Vol. 2, 245-320.

    Google Scholar 

  • Domen, S. R.; Krauss, A.; Roos, M. (1991): The Problem of Convection in the Water Absorbed Dose Calorimeter. In: Thermochemica Acta, 187, 225–233.

    Google Scholar 

  • Draganic, I. (1974): Liquid Chemical Dosimeters. In: Gaughran u. Goudie (Hrsg.): 253-284.

    Google Scholar 

  • Dresel, H. (1956): Filmdosimetrie bei Strahlenschutzmessungen. Fortschr. Röntgenstr. 84, 214–222.

    Google Scholar 

  • Driscoll, C. M. H. u.a. (1986): Annealing procedures for commonly used radiothermoluminescent materials. Radiat. Prot. Dosim. 14, 17–32.

    Google Scholar 

  • Dudley, R. A. (1966): Dosimetry with photographic emulsion. In: Attix u.a. (Hrsg.): Bd. II, 325-387.

    Google Scholar 

  • Eichholz, G.G.; Poston, J.W. (1980): Principle of Nuclear Radiation Detection. Ann Arbor: Ann Arbor Science.

    Google Scholar 

  • Ellis, S. C. (1977): The Dissemination of Absorbed Dose Standards by Chemical Dosimetry, Mechanism and Use of the Fricke-Dosemeter. In: Casnati, E. (Hrsg.): 163-180.

    Google Scholar 

  • Emery, E. W. (1966): Geiger-Müller and Proportional Counters. In: Attix u.a. (Hrsg.): Bd. II, 73-122.

    Google Scholar 

  • Engelke, B. A.; Hohlfeld, K. (1971): Ein Kalorimeter als Energiedosis-Standardmeßeinrichtung und Bestimmung des mittleren Energieaufwandes zur Erzeugung eines Ionenpaares in Luft. PTB-Mitt 71, 336–342.

    Google Scholar 

  • Engelke, B. A.; Oetzmann, W.; Struppek, G. (1988): Die Meßeinrichtungen der Physikalisch-Technischen Bundesanstalt zur Darstellung der Einheiten der Standard-Ionendosis, Photonen-Äquivalentdosis und Luftkerma. PTB-Ber. DOS-16, Bremerhaven: Wirtschaftsverlag.

    Google Scholar 

  • Ettinger, K. V; Mallard, J. R. u.a. (1980): Application of lyoluminescence. Nucl. Instr. and Meth. 175, 136–138.

    Google Scholar 

  • Ettinger, K.V.; Puite, K. J. (1982): Lyoluminescence, Pt. I and II. Int. J. Appl. Radiat. Isot. 33, 1115–1157.

    Google Scholar 

  • Fehrentz, D.; Zunter, F. (1968): Zur Filmdosimetrie in der Strahlentherapie. Strahlentherapie 135, 301–306.

    Google Scholar 

  • Feist, H. (1982): Determination of the absorbed dose to water for high energy photons and electrons by total absorption of electrons in ferrous sulphate solution. Phys. Med. Biol 27, 1435–1447.

    Google Scholar 

  • Feist, H. (1988): Einfluß des Regenerier-und Auswerteverfahrens auf das supralineare Verhalten von LiF-Thermolumineszenzdosimeter. Strahlenther. Onkol. 164, 223–227.

    Google Scholar 

  • Fleischer, R. L. u.a. (1975): Nuclear Tracks in Solids. Berkely, Los Angeles, London: Univ. of California Press.

    Google Scholar 

  • Fliedner, T. M.; Nothdurft, W. (1986): Hemapoetic progenitor cell changes in the blood as indicators of radiation damage to the bone marrow. In: Kaul u.a. (Hrsg.), 270-273.

    Google Scholar 

  • Fletcher, J. W. (1982): Radiation chemistry of water at low dose rates with emphasis on the energy balance: A computer study. AECL Rep. AECL-7834.

    Google Scholar 

  • Fowler, J. F. (1966): Solid State Electrical Conductivity Dosimeters. In: Attix u.a. (Hrsg.), Vol. II, 291-324.

    Google Scholar 

  • Fricke, H.; Hart, E. J. (1966): Chemical Dosimetry. In: Attix u.a. (Hrsg.): Bd. II, 167-239.

    Google Scholar 

  • Geiger, K. W.; Feist, H.; Böhm, J. (1980): Ion losses in a plane-parallel ionisation chamber iradiated with a pulsed electron beam. Phys. Med. Biol. 25, 677–682.

    Google Scholar 

  • Gibson, J. A. B.; Piescch, E. (1985): Neutron Monitoring for Radiological Protection. IAEA Technical Reports Series No. 252. Wien: IAEA.

    Google Scholar 

  • Göhde, u. a. (1986): Spermatogenesis — an in vivo indicator for ionizing irradiation. In: Kaulu.a. (Hrsg.), 263-269.

    Google Scholar 

  • Goldfinch, E. P. u.a. (Hrsg.) (1993): Solid State Dosimetry. Proc. 10th Int. Conf. on Solid State Dosimetry. Radiat. Prot. Dosim. 47, (1-4).

    Google Scholar 

  • Grundl, J.A.; Gilliam, D.M.; Dudey, N.D.; Popek, R. J. (1975): Measurement of Absolute Fission Rates. Nucl. Technol. 25, 237–257.

    Google Scholar 

  • Guiho, J.-P.; Simoen, J.-P.; Domen, S. R. (1978): Comparison of BNM-LMRI and NBS absorbed dose standards for 60Co gamma rays. Metrologia 14, 63–68.

    Google Scholar 

  • Gunn, S. R. (1976): Radiometric calorimetry: A review. Nucl. Instrum. Methods 135, 251–312.

    Google Scholar 

  • Harvey, J. A.; Hill, N. W. (1979): Scintillation Detectors for Neutron Physics Research. Nucl. Instr. Meth. 162, 507–529.

    Google Scholar 

  • Heide, L.; Bögl, W. (1987): Chemoluminescence dosimetry of accidental gamma and X ray exposure with solid substances. Radiat. Prot. Dosim. 19, 35–41.

    Google Scholar 

  • Hepburn, C; Windle, A. H. (1980): Review, Solid State Nuclear Track Detectors. J. of Materials Sci. 15, 279–301.

    Google Scholar 

  • Hertz, G. (Hrsg.) (1966): Lehrbuch der Kernphysik Bd. I. Experimentelle Verfahren. Hanau: Dausien.

    Google Scholar 

  • Höfert, M.; Piesch, E. (1985): Neutron Dosimetry with Nuclear Emulsions. Radiat. Prot. Dosim. 10(1–4), 189–193.

    Google Scholar 

  • Holzapfel, G.; Oppermann, K.-G.; Petel, M.; Portal, G. (1980a): Comparative TL-TSEE measurements of flame-sintered LiF TLD materials. Nucl. Instr. Meth. 175, 107–108.

    Google Scholar 

  • Holzapfel, G.; Petel, M.; Wieters, C.-U. (1980b): Optimization of flame sintered A12O3 exoelectron dosimetry materials. Nucl. Instr. Meth. 175, 112–114.

    Google Scholar 

  • Horowitz, Y. S. (Hrsg.) (1984): Thermoluminescent Dosimetry, Bd. I bis III. Boca Raton, Florida: CRC Press Inc.

    Google Scholar 

  • Horowitz, Y. S.; Yossian, D. (1995): Computerized Glow Curve Deconvolution. Application to Thermoluminescence Dosimetry. Radiat. Prot. Dosim. 60, (1).

    Google Scholar 

  • Hübner, W. (1974): Photographische Methoden. In: Jaeger, R.G.; Hübner, W. (Hrsg.): 195-200.

    Google Scholar 

  • ICRU 14 (1969): Radiation Dosimetry: X-Rays and Gamma Rays with Maximum Energies Between 0.6 and 50 MeV. ICRU Report 14, Washington: ICRU.

    Google Scholar 

  • ICRU 17 (1970): Radiation Dosimetry: X-Rays generated at Potentials of 5 to 150 kV. ICRU Report 17, Washington: ICRU.

    Google Scholar 

  • ICRU 34 (1982): The Dosimetry of Pulsed Radiation. ICRU Report 34, Bethesda, Md.: ICRU Publ.

    Google Scholar 

  • Ing, H. (1986): The Status of the Bubble-Damage Polymer Detectors. In: Proceedings 13th Intern. Conf. on Solid State Tract Detectors, Rom, 1985. Nuclear Tracks and Radiation Measurements, Vol. 12, London: Pergamon Press.

    Google Scholar 

  • Jaeger, R. G.; Hübner, W. (Hrsg.) (1974): Dosimetric und Strahlenschutz. Stuttgart: Thieme.

    Google Scholar 

  • Jain, V. K. (1982): Thermoluminescent of lithium fluoride. Radiat. Prot. Dosim. 2, 141–167.

    Google Scholar 

  • Johansson, K. A.; Svensson, H. (1982): Liquid Ionization Chamber for Absorbed Dose Determination in Photon and Electron Beams. Acta Radiol. Oncol. 21, 359–367.

    Google Scholar 

  • Johns, H. E.; Cunningham, J. R. (1983): The Physics of Radiology. Springfield, Ill.: C. C. Thomas.

    Google Scholar 

  • Jones, A. R.; Richter, W. (1982): A personnel dosimetry system using sensitised lithium fluoride TLDs. Radiat. Prot. Dosim. 3, 135–142.

    Google Scholar 

  • Kaul, A.; Dehos, A.; Bögl, W.; Hinz, G.; Kossel, F.; Schwarz, E.; Stamm, A.; Stephan, G. (1986): Biological Indicators for Radiation Dose Assessment. (Hrsg.): STH-Berichte. München: MMV Medizin.

    Google Scholar 

  • Käse, K. R.; Bjärngard, B. E.; Attix, F. H. (Hrsg.) (1985, 1987): The Dosimetry of Ionizing Radiation. Vol. 1 (1985), Vol. 2 (1987). London: Academic Press.

    Google Scholar 

  • KEG (1977): Radiological protection — 10. Technical recommendations for the use of radiophotoluminescence dosimetry in individual monitoring. EUR 5655e. Luxemburg: Kommission der Europäischen Gemeinschaften.

    Google Scholar 

  • Kemp, L. A. W.; Read, L. R. (1968): An inflated balloon ionization chamber for low energy, low level X-ray exposure measurement. Phys. Med. Biol. 13, 451–454.

    Google Scholar 

  • Kiefer, H.; Piesch, E. (1969): Die Ermittlung der Strahlenqualität und der Dosis von Röntgenstrahlung über eine Tiefendosismessung in silberaktivierten Phosphatgläsern. Atompraxis 15, 1–7.

    Google Scholar 

  • Knoll, G. F. (1989, 1992): Radiation Detection and Measurement. New York: Wiley.

    Google Scholar 

  • Kolb, W.; Lauterbach, U. (1974): The improved Scintillation Dosimeter PTB 7201. AED-Conf.-74-725-00, Vol. 2, 662–690. Leopoldshafen: Zentralstelle für Atomkernenergie-Dokumentation.

    Google Scholar 

  • König, W. (1981): A New Automatic Computerised Phosphate Glass Reader Using a Scanning Technique for Estimating Dose, Radiation Quality and Direction of Radiation. Radiat. Prot. Dosim. 1, 43–49.

    Google Scholar 

  • Kottler, W.; Lerch, D.; Kriegseis, W.; Scharmann, A.; Wörner, D. (1980): Evaporated beryllium oxide film for TSEE dosimetry. Nucl. Instr. Meth. 175, 101–103.

    Google Scholar 

  • Kuhn, A. (1969): Halbleiter-und Kristallzähler. Leipzig: Akad. Verlagsges. Geest & Portig.

    Google Scholar 

  • Lamaze, G. P. (1977): Special Problems with 6Li Glasses. In: NBS, S. 37-42.

    Google Scholar 

  • Lang, G. (1979): Der heutige Stand der röntgendiagnostischen Bilderzeugung, Teil 1: Röntgenanlagen und Einrichtungen. In: Reich, H. (Hrsg.): Med. Phys., 339–347. Heidelberg: Hüthig.

    Google Scholar 

  • Lemmel, H. D.; McLaughlin, P. K. (1990): ENDF/B — VI Standards Library. Summary and contents and documentation. IAEA-NDS-88 (Rev. 2), Wien: IAEA, Nuclear Data Section.

    Google Scholar 

  • Lo, Y. C; Apfel, E. (1988): Prediction and experimental confirmation of the response function for neutron detection using superheated drops. Phys. Rev. A 38, 5260–5266.

    Google Scholar 

  • Loevinger, R.; Trott, N. G. (1966): Design and Operation of an Extrapolation Chamber with Removable Electrodes. Int. J. Appl. Rad. Isot. 17, 103–111.

    Google Scholar 

  • Loevinger, R. (1966): Precision measurement with the total-feedback electrometer. Phys. Med. Biol. 11, 267–279.

    Google Scholar 

  • Lörch, T.; Wittler, C; Frieben, M.; Stephan, G. (1992): Automatische Chromosomendosimetrie. Bericht ISH-158/92, Neuherberg: Bundesamt f. Strahlenschutz.

    Google Scholar 

  • Lübbert, K.; Rahim, H. (1985): Energieabhängigkeit des TLD-Ansprechvermögens für energiereiche Elektronen. Strahlentherapie 161, 109–112.

    Google Scholar 

  • Luszik-Bhadra, M. u.a. (1994): A CR-39 track dosemeter for routine individual neutron monitoring. Radiat. Prot. Dosim. 55, 285–293.

    Google Scholar 

  • Ma, Chang-Ming; Nahum, A. E. (1992): Dose Conversion and wall correction factors for Fricke dosimetry in high-energy photon beams: analytical model and Monte Carlo calculations. Phys. Med. Biol. 38, 93–114.

    Google Scholar 

  • Margraf. C; Bork, K. P. (1991): Konstanzprüfungen an diagnostischen Röntgenanlagen. Z. Med. Phys. 1(4), 183–188.

    Google Scholar 

  • Markus, B. (1975): Eine polarisierungseffekt-freie Graphit-Doppelextrapolationskammer zur Absolutdosimetrie schneller Elektronen. Strahlentherapie 150, 307–320.

    Google Scholar 

  • Maushart, R.; Piesch, E. (1970): Personnel Dosimetry System for External Radiation Exposure. IAEA Technical Report Series No. 109, Wien: IAEA.

    Google Scholar 

  • Matthews, R. W. (1982): Aqueous Chemical Dosimetry. Int. J. Appl. Radiat. Isot. 33, 1159–1170.

    Google Scholar 

  • McDonald, J. C; Laughlin, J. S.; Freeman, R. E. (1976): Portable tissue equivalent calorimeter. Med. Phys. 3, 80–86.

    Google Scholar 

  • McDonald, J. C, Goodman, L. J. (1982): Measurement of the thermal defect of A-150 plastic. Phys. Med. Biol. 27, 229–233.

    Google Scholar 

  • McKinley, A. F. (1981): Thermoluminescence Dosimetry. Bristol: Adam Hilger.

    Google Scholar 

  • McLaughlin, W. L. (1974): Solid-Phase Chemical Dosimeters. In: Gaughran u. Goudie (Hrsg.): 219-253.

    Google Scholar 

  • Nahum, A. E.; Svensson, H.; Brahme, A. (1981): The ferrous sulphate g-value for electron and photon beams: A semi-empirical analysis and its experimental support. In: Booz, J. u.a. (Hrsg.): Proc. 7th Symp. on Microdosimetry, Bd. 2, S. 841-851, EUR 7147. Chur: Harwood Academic Publ.

    Google Scholar 

  • NBS (1977): Neutron Standards and Applications. NBS Special Publ. 493. Washington, D.C.: U.S. Department of Commerce, National Bureau of Standards.

    Google Scholar 

  • Neuert, H. (1966): Kernphysikalische Meßverfahren zum Nachweis für Teilchen und Quanten. Karlsruhe: Braun.

    Google Scholar 

  • Niatel, M.-T.; Loftus, T.P.; Oetzmann, W. (1975): Comparison of Exposure Standards for 60Co Gamma Rays. Metrologia 11, 17–23.

    Google Scholar 

  • Oed, A. (1988): Position-sensitive detector with microstrip anode for electron multiplication with gases. Nucl. Instr. and Meth. A263, 351–359.

    Google Scholar 

  • Panzer, W.; Regulla, D. (1976): Festkörperdosimetrie im medizinischen Bereich I. Dosimetrische Grundlagen. Röntgenpraxis 29, 154–162.

    Google Scholar 

  • Paic, G. (1988): Ionizing Radiation: Protection and Dosimetry, 253 S. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Petterson, C; Hettinger, G. (1967): Dosimetry of High-Energy Electron Radiation Based on the Ferrous Sulphate Dosimeter. Acta Radiol. Ther. Phys. Biol. 6, 160–176.

    Google Scholar 

  • Piesch, E. (1980): Dosimetrische Verfahren zur Messung niedriger und hoher Strahlendosen. Chemiker-Z. 104, 115–133.

    Google Scholar 

  • Piesch, E.; Burgkhardt, B.; Vilgis, M. (1993): Progress in Phosphate Glass Dosimetry: Experiences and Routine Monitoring with a Modern Dosimetry System. Radiat. Prot. Dosim. 47, 409–414.

    Google Scholar 

  • Portal, G.; Scharmann, A. (Hrsg.) (1983): Proc. 7th Int. Conf. on Exoelectrons. Radiat. Prot. Dosim. 6, (1–4).

    Google Scholar 

  • Preston, H. E. Gill, D.W. (1982): The personal dosimetry service at AEE Winfrith based on the use of thermoluminescent LiF/PTFE. Radiat. Prot. Dosim. 3, 143–159.

    Google Scholar 

  • Rassow, J. (1980): Physikalisch-methodische Grundlagen der Strahlentherapie. In: Scherer, E. (Hrsg.): Strahlentherapie. 1–95. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Rassow, J.; Strüter, H.-D. (1971): Beitrag zur Filmdosimetrie energiereicher Strahlen. Strahlentherapie 141, 336–345.

    Google Scholar 

  • Regulla, D. F.; Deffner, U. (1982): Dosimetry by ESR Spectroscopy of Alanine. Int. J. Appl. Radiat. Isotopes 33, 1101–1114.

    Google Scholar 

  • Reich, H. (Hrsg.) (1990): Dosimetric Ionisierender Strahlung. Stuttgart: Teubner.

    Google Scholar 

  • Rikner, G.; Gruseil, E. (1983): Effects of radiation damage on p-type silicon detectors. Phys. Med. Biol. 28, 1261–1267.

    Google Scholar 

  • Rikner, G. (1985a): Characteristics of a p-Si detector in high energy electron fields. Acta Radiol. Oncol. 24,71–74.

    Google Scholar 

  • Rikner, G. (1985b): Characteristics of a selectively shielded p-Si detector in 60-Co and 8 and 16 MV x-ray radiation. Acta Radiol. Oncol. 24, 205–208.

    Google Scholar 

  • Rikner, G.; Grusell, E. (1985): Selective shielding of a p-Si detector for quality independence. Acta Radiol. Oncol. 24, 6–70.

    Google Scholar 

  • Rikner, G.; Grusell, E. (1987): Patient dose measurements in photon fields by means of Silicon semiconductor detectors. Med. Phys. 14, 870–873.

    Google Scholar 

  • Roos, M.; Hohlfeld, K. (1987): Einsatz des Wasser-Energiedosis-Kalorimeters bei verschiedenen Bestrahlungsbedingungen. In: Bergmann, H. (Hrsg.): Medizinische Physik 87, 356-363, Wien.

    Google Scholar 

  • Roos, M.; Hohlfeld, K. (1992): An Experimental Method for Determining the Heat Defect of Water Using Total Absorption of High-energy electrons. Metrologia 29, 59–65.

    Google Scholar 

  • Ross, C. K.; Klassen, N. V.; Smith, G. D. (1984): The effects of various dissolved gases on the heat defect of water. Med. Phys. 11, 653–658.

    Google Scholar 

  • Rö V (1987): Verordnung über den Schutz vor Schäden durch Röntgenstrahlen (Röntgenverordnung — RöV). Bundesgesetzblatt Teil I, 114-133.

    Google Scholar 

  • Sauter, E. (1983): Grundlagen des Strahlenschutzes, 2. Aufl. München: Thiemig.

    Google Scholar 

  • Scharmann, A.; Kriegseis, W. (1986): Present state of the art of TSEE dosimetry. Radiat. Prot. Dosim. 17, 359–366.

    Google Scholar 

  • Selbach, H. J.; Hohlfeld, K.; Kramer, H. M. (1984): Radiation characteristics of depth dose equivalent meters. In: Kant, A.; Neider, R. u.a. (Hrsg.): Radiation — Risk — Protection, 6th Int. Congr. IPRA, Vol. III, 1178–1180. Wurenlingen: Fachverband Strahlenschutz.

    Google Scholar 

  • Schneider, W. (1973): Neutronenmeßtechnik. Berlin, New York: de Gruyter.

    Google Scholar 

  • Schneider, M. K. H (1994): Intercomparison of dose determination as a means of dose quality assurance in hospital dosimetry. In: Proc. of Int. Symp. on Assurance in Dosimetry. IAEA-SM-330/47, 141–150, Wien: IAEA.

    Google Scholar 

  • Seligmann, H.; McLaughlin, W. L. (Hrsg.) (1989): ESR Dosimetry and Applications. Int. J. Radiat. Appl. and Instrumentation, Part A, Vol. 40, 829-1231.

    Google Scholar 

  • Spanne, P. (1979): Thermoluminescence Dosimetry in the μGy Range. Acta Radiol. Suppl. 360.

    Google Scholar 

  • Stephan, G. (1979): Spezielle biologische Indikatorsysteme und deren Aussagekraft. In: Stieve, F. E.; Möhrle, G. (Hrsg.): Strahlenschutzkurs für ermächtigte Ärzte, 171–181. Berlin: Hildegard Hoffmann.

    Google Scholar 

  • Stephan, G. (1983): Biologische Dosimetric In: Schütz, J. (Hrsg.): Medizinische Physik 1983, 319–330, Heidelberg: Hüthig.

    Google Scholar 

  • TLD Seminar (1985): Beiträge verschiedener Autoren. Strahlentherapie 161, 67–112.

    Google Scholar 

  • Straume, T.; Lucas, J.N.; Tucker, J.D.; Bigbee, W. L.; Langlois, R. G. (1992): Biodosimetry for a Radiation Worker using Multiple Assays. Health Physics 62, 122–130.

    Google Scholar 

  • StrlSchV (1989): Verordnung über den Schutz vor Schäden durch ionisierende Strahlen (Strahlenschutzverordnung — StrlSchV). Bundesgesetzblatt Teil I, 1321.

    Google Scholar 

  • Strüter, H. D. (1971): Eigenschaft von LiF-Thermolumineszenzdetektoren bei der Dosimetric energiereicher Strahlen. Strahlentherapie 142, 174–182.

    Google Scholar 

  • Svensson, H.; Brahme, A. (1979): Ferrous Sulphate Dosimetry for Electrons, a Re-evaluation. Acta Radiol. Oncol. 18, 326–336.

    Google Scholar 

  • Tait, W. H. (1980): Radiation Detection. London: Butterworths.

    Google Scholar 

  • Takata, N. (1994): The effects of humidity on volume recombination in ionization chambers. Phys. Med. Biol. 39,1047–1052.

    Google Scholar 

  • Turner, B. A.; Mash, D. H.; Fowler, J. F. (1963): The reduction of response times in CdS radiation detectors by the use of “biasing” radiation. Phys. Med. Biol. 8, 439–450.

    Google Scholar 

  • Valvo Handbuch (1989): Zählrohre, Hamburg: Valvo GmbH.

    Google Scholar 

  • Vanitski, S. M. u. a. (1993): Diamond Detector Dosimetry for Medical Applications. Radiat. Prot. Dosim 47, 515–517.

    Google Scholar 

  • Weinhous, M.S.; Meli, J. A. (1984): Determining Pion, the correction factor for recombination losses in an ionization chamber. Med. Phys. 11, 846–849.

    Google Scholar 

  • Weston, L.W. (1977): Instruments for Use of 6Li as a Standard. In: NBS S. 43-46.

    Google Scholar 

  • Yokota, R.; Nakajima, S. (1965): Improved fluoro-glass dosimeter as personnel monitoring dosimeter and microdosimeter. Health Phys. 11, 241–253.

    Google Scholar 

Literatur zu 7.5

  • Alfassi, Z. B. (Hrsg.) (1990): Activation analysis, Vol. I and II. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Amiel, S. (1981): Nondestructive Activation Analysis. Amsterdam, Oxford, New York: Elsevier.

    Google Scholar 

  • Anders, E.; Wolf, R.; Morgan, J.W.; Ebihara, M.; Wodrow, A.B.; Jannsens, M.J.; Hertogen, J. (1988): Radiochemical neutron activation analysis for 36 elements in geological material. Springfield, VA: National Technical Information Service.

    Google Scholar 

  • Andersen, H. H.; Ziegler, J. F. (Hrsg.) (1980): The stopping and ranges of ions in matter. Bd. 6. Littmark u. Ziegler: Handbook of range distributions for energetic ions in all elements. New York, Frankfurt: Pergamon Press.

    Google Scholar 

  • Aurand, K. u.a. (Hrsg.) (1974): Die natürliche Strahlenbelastung des Menschen. Stuttgart: Thieme.

    Google Scholar 

  • Axton, E. J. (1987): Intercomparison of neutron-source emission rates (1979–1984). Metrologia 23, 129–144.

    Google Scholar 

  • Baerg, A. P. (1967): Absolute measurements of radioactivity. Metrologia 3, 105–108.

    Google Scholar 

  • Baerg, A. P. u.a. (1976): Live timed anti-coincidence counting with extending dead-time circuitry. Metrologia 12, 77–80.

    Google Scholar 

  • Beckurts, K. H.; Wirtz, K. (1964): Neutron Physics. Berlin, Heidelberg, New York: Springer.

    MATH  Google Scholar 

  • Berry, P. F; Martin, T. C. (1972): Neutron Activation Analysis in Process Control. In: Lenihan u.a. (Hrsg.): Bd. 2, 89-125.

    Google Scholar 

  • BIPM (1980): The Application of Liquid Scintillation Counting to Radionuclide Metrology. Monographie.

    Google Scholar 

  • BIPM-3. Sèvres: Bureau International des Poids et Mesures.

    Google Scholar 

  • BIPM (1981): Bibliography on dead-time effects, Rapport BIPM-81/11. Sèvres: Bureau International des Poids et Mesures.

    Google Scholar 

  • BMU (Hrsg.) (1991): Umweltradioaktivität und Strahlenbelastung. Jahresbericht 1988. Bonn: BMU.

    Google Scholar 

  • BMU (Hrsg.) (1992): Meßanleitungen für die Überwachung der Radioaktivität in der Umwelt und zur Erfassung radioaktiver Emissionen aus kerntechnischen Anlagen. Stuttgart: Gustav Fischer Verlag.

    Google Scholar 

  • Braun, T.; Bujdoso, E. (1973): Radiochemical Separation Methods. Amsterdam, Oxford, New York: Elsevier.

    Google Scholar 

  • Campion, P. J. (1959): The standardization of radioisotopes by the beta-gamma coincidence method using high efficiency detectors. Int. J. Appl. Radiat. Isot. 4, 232–248.

    Google Scholar 

  • Chapman, T. C(1990): PC-based analysis of alpha-particle spectra. Nucl. Instr. and Meth. in Phys. Res. A299, 272–275.

    Google Scholar 

  • Daniel, H. (1974): Beschleuniger. Stuttgart: Teubner.

    Google Scholar 

  • Debertin, K. (1971): Relative Aktivitätsbestimmungen mit Ge(Li)-Detektoren. Atomkernenergie 17, 97–102.

    Google Scholar 

  • Debertin, K. (1980): Meßanleitung für die Bestimmung von Gammastrahlen-Emissionsraten mit Germanium-Detektoren. Bericht PTB-Ra-12 Braunschweig: Physikalisch-Technische Bundesanstalt.

    Google Scholar 

  • Debertin, K.; Helmer, R. G. (1988): Gamma-and X-Ray Spectrometry with Semiconductor Detectors. Amsterdam: Amsterdam: North HollandNorth Holland.

    Google Scholar 

  • Debertin, K.; Schötzig, U. (1990): Bedeutung von Summationskorrektionen bei der Gammastrahlen-Spektrometrie mit Germaniumdetektoren. PTB-Bericht PTB-Ra-24 Braunschweig: Physikalisch-Technische Bundesanstalt.

    Google Scholar 

  • de Bettencourt, A.O.; Galvao, J. P.; Lowder, W.; Olast, M.; Sinnaeve, J. (Hrsg.) (1988): Natural Radioactivity. Radiat. Prot. Dosim. 24, (1–4).

    Google Scholar 

  • DeVoe, J. R. (1961): Radioactive Contamination of Materials Used in Scientific Research. NAS-NRC Publication 895. Washington D. C: National Academy of Science.

    Google Scholar 

  • DIN 6814 Teil 4 (1990): Begriffe und Benennungen in der radiologischen Technik. Radioaktivität. Berlin: Beuth.

    Google Scholar 

  • DIN 25482 Teil 1 (1989): Nachweisgrenze und Erkennungsgrenze bei Kernstrahlungsmessungen. Zählende Messungen ohne Berücksichtigung des Probenbehandlungseinflusses. Berlin: Beuth.

    Google Scholar 

  • DIN 25482 Teil 5 (1991): Nachweisgrenze und Erkennungsgrenze bei Kernstrahlungsmessungen. Zählende hochauflösende gammaspektrometrische Messungen ohne Berücksichtigung des Probenbehandlungseinflusses. Berlin: Beuth.

    Google Scholar 

  • DIN 25702 (1995): Abschirmung von Detektoren für nuklidspezifische Aktivitätsmessungen; Standardsysteme mit Germaniumdetektoren. Berlin: Beuth.

    Google Scholar 

  • Engelmann, C. (1981): Méthodes Nucléaires d’Analyse des Elément Légèrs dans des Métaux. In: Kraft, G. (Hrsg.): Analysis of Non-Metals in Metals, 135–150. Berlin, New York: de Gruyter.

    Google Scholar 

  • Erdtmann, G.; Soyka, W. (1979): The Gamma Rays of the Radionuclides — Tables for Applied Gamma Ray Spectrometry. Weinheim, New York: Chemie.

    Google Scholar 

  • Faires, R. A.; Boswell, G. G. J. (1981): Radioisotope Laboratory Techniques. London: Butterworths.

    Google Scholar 

  • Fanger, H.-U.; Pepelnik, R.; Michaelis, W. (1980): Activationanalysis Prospects by Using a Concentric 5 · 1012 · n/s Sealed Neutron Tube Combined with a Fast Rabbit System. Bericht Nr. GKSS 80/E/38. Geesthacht: Gesellschaft für Kernenergieverwertung in Schiffbau und Schiffahrt mbH.

    Google Scholar 

  • Fleischer, R. L. u.a. (1972): Particle track etching. Science 178, 255–263.

    Google Scholar 

  • Frindik, O. (1980): Alphaspektrometrische Methode zur Bestimmung von Plutonium und Uran in Lebensmitteln, biologischem Material und Böden. BFE-Bericht 1980/6. Karlsruhe: BFE.

    Google Scholar 

  • FS (1990): Inkorporationsüberwachung auf Tritium. FS-90-49-AKI. Zürich: Fachverband für Strahlenschutz e.V.

    Google Scholar 

  • Fujita, Y. u.a. (1977): A low-level needle counter. In: Povinec u. Usacev (Hrsg.), 45-49.

    Google Scholar 

  • Gans, I. (1992): Methodik der Radonmessung. In: Reingers, C. (Hrsg.): Strahlenschutz in Forschung und Praxis; Bd. 33. Stuttgart: Gustav Fischer.

    Google Scholar 

  • Gans, L; Fusban, H.U.; Wollenhaupt, H.; Kiefer, J.; Glöber, B.; Berlich, J.; Porstendörfer, J. (1987): Radium 226 und andere natürliche Radionuklide im Trinkwasser und in Getränken in der Bundesrepublik Deutschland. WaBoLu-Hefte 4/1887. Berlin: Bundesgesundheitsamt.

    Google Scholar 

  • Gardner, R. P. u.a. (1980): The average solid angle subtended by a circular detector coaxial to a circular isotropic source. Nucl. Instr. and Meth. 176, 615–617.

    Google Scholar 

  • Garfinkel, S. B. u.a. (1973): Present status in the field of gas counting. Nucl. Instr. and Meth. 112, 59–68.

    Google Scholar 

  • Gesell, T. F.; Lowder, W. M. (1978): The Natural Radiation Environment III; Conf-780422; Springfield, USA: US Dept. of Commerce.

    Google Scholar 

  • Grau Malonda, A.; Garcia Torano, E. (1982): Evaluation of counting efficiency in liquid scintillation counting of pure ß-ray emitters. Int. J. Appl. Radiat. Isot. 33, 249–253.

    Google Scholar 

  • Hassib, G. M.; Piesch, E.; Massera, G.E. (1979): Electrochemical Etching of Alpha Particles in Polycarbonates and Applications. In: Francois, H. u.a. (Hrsg.): Proc. 10th Int. Conf. on Solid State Nuclear Track Detectors, 329–335. Oxford: Pergamon Press.

    Google Scholar 

  • Heath, R. L. (1978): Gamma-Ray Spectrum Catalogue. Bericht ANCR-1000-2. Idaho Falls: Aerojet Nuclear Company.

    Google Scholar 

  • Helmer, R. G.; Cline, J.E.; Greenwood, R. C. (1975): Gamma-Ray Energy and Intensity Measurements with Ge(Li)-Spectrometers. Chapter 17 in: The Electromagnetic Interaction in Nuclear Spectroscopy (Hamilton, W. D. Hrsg.): Amsterdam/Oxford: North Holland Publishing Company.

    Google Scholar 

  • Holm, E.; Ballestra, S. (1989): Methods for radiochemical analysis of plutonium, americium and curium. In: Measurement of Radionuclides in Food and the Environment, A Guidebook. Technical Report Series 295, Annex IV, 105–116. Wien: IAEA.

    Google Scholar 

  • Horrocks, D. L. (1974): Applications of Liquid Scintillation Counting. New York: Academic Press.

    Google Scholar 

  • Houtermans, H.; Miguel, M. (1962): 4 πß-β-coincidence counting for the calibration of nuclides with complex decay schemes. Int. J. Appl. Rad. Isot. 13, 137–142.

    Google Scholar 

  • IAEA (1981): Methods of low-level counting and spectrometry. Proc. Series, STI/PUB/592. Wien: IAEA.

    Google Scholar 

  • ICRU 22 (1972): Measurement of Low-Level Radioactivity. ICRU Report 22. Washington: ICRU.

    Google Scholar 

  • ICRU 33 (1980): Radiation Quantities and Units. ICRU Report 33. Bethesda, MD: ICRU Publications.

    Google Scholar 

  • ICRU 49 (1993): Stopping Powers and Ranges for Protons and Alpha Particles. ICRU Report 49. Bethesda, MD: ICRU Publications.

    Google Scholar 

  • ICRU 52 (1994): Particle Counting in Radioactivity Measurement. ICRU Report 52. Bethesda, MD: ICRU Publications.

    Google Scholar 

  • Kanisch, G.; Rühle, H. (1992): Nachweis-und Erkennungsgrenzen verschiedener Meßmethoden. In: BMU (Hrsg.): Abschn. IV. 5. Bonn: BMU.

    Google Scholar 

  • Knoll, G. F. (1989, 1992): Radiation Detection and Measurement. New York: John Wiley.

    Google Scholar 

  • Kolb, W. A. (1968): Die Eigenaktivität von Blei. In: Proc. of the First Intern. Congress of Radiation Protection, 1385–1391. Oxford: Pergamon Press.

    Google Scholar 

  • Kolb, W. A. (1992): Aktivitätskonzentrationen von Radionukliden in der bodennahen Luft Norddeutschlands und Nordnorwegens im Zeitraum von 1963 bis 1990. PTB-Ra-29. Bremerhaven: Wirtschaftsverlag.

    Google Scholar 

  • Kolb, W. A.; Schmier, H. (1978): Building Material Induced Radiation Exposure of the Population. Envir. Intern. 1, 69–71.

    Google Scholar 

  • Kovalchuk, E. L. u.a. (1977): Deep Underground Laboratory for Low-Radioactivity Measurements. In: Povinec u. Usacev (Hrsg.): 23-27.

    Google Scholar 

  • Kristan, J.; Kobal, I. (1973): A modified Scintillation Cell for the Determination of Radon in Uranium Mine Atmosphere. Health Phys. 24, 103–104.

    Google Scholar 

  • Lenihan, I.M.A.; Thomson, S. I.; Guinn, V. P. (Hrsg.) (1972): Advances in Activation Analysis, Bd. 2. London, New York: Academic Press.

    Google Scholar 

  • Löbner, K. E. G. (1975): Delayed coincidence methods. In: Hamilton, W. D. (Hrsg.): The Electromagnetic Interaction in Nuclear Spectroscopy. Amsterdam, Oxford: North-Holland Publishing.

    Google Scholar 

  • Lucas, H. F. (1957): Improved low-level alpha-scintillation counter for radon. Rev. Sci. Instr. 28, 680–683.

    Google Scholar 

  • Mann, W. B.; Rytz, A.; Spernol, A. (1988): Radioactivity Measurements-Principles and Practice. Appl. Rad. Isot. 39, 717–937. Korrigierter Nachdruck, Oxford: Pergamon Press 1991.

    Google Scholar 

  • Merritt, J. S. u.a. (1959): Self-absorption in sources prepared for 4πÒ counting. Can. J. Chem. 37, 1109–1114.

    Google Scholar 

  • Müller, J. W. (1973): Dead-time problems. Nucl. Instr. and Meth. 112, 47–57.

    Google Scholar 

  • Müller, J. W. (1981): Selective sampling — an alternative to coincidence counting. Nucl. Instr. and Meth. 189, 449–452.

    Google Scholar 

  • Nargolwalla, S.S.; Przybylowicz, E. P. (1973): Activation Analysis with Neutron Generators. New York, London, Sydney, Toronto: Wiley.

    Google Scholar 

  • Nazaroff, W. W. (1984): Optimizing the total-alpha three-count technique for measuring concentrations of radon progeny in residences. Health Phys. 46, 395–405.

    Google Scholar 

  • NCRP (1976): Environmental Radiation Measurements. NCRP Report 50. Bethesda, MA: National Council on Radiation Protection and Measurement.

    Google Scholar 

  • NCRP (1978): Instrumentation and Monitoring Methods for Radiation Protection. NCRP Report 57. Bethesda, MA: National Council on Radiation Protection and Measurement.

    Google Scholar 

  • NCRP (1985): A Handbook of Radioactivity Measurements Procedures; 2nd edition. NCRP Report 58. Bethesda, MA: National Council on Radiation Protection and Measurement.

    Google Scholar 

  • NCRP (1987): Exposure of the Population in the United States and Canada from Natural Background Radiation. NCRP Report 94. Bethesda, MA: National Council on Radiation Protection and Measurement.

    Google Scholar 

  • Oeschger, H.; Loosli, H. H. (1977): New developments in sampling and low level counting of natural radioactivity. In: Povinec u. Usacev (Hrsg.): 13-22.

    Google Scholar 

  • Palazzolo, M.; Prati, P.; Ricco, G.; Taiuti, M. (1992): A beta spectrometer for monitoring environmental matrices. Health Phys. 62, 155–161.

    Google Scholar 

  • Parker, J. L. (1990): Near-optimum procedure for half-life measurement by high-resolution gamma-ray spectroscopy. Nucl. Instr. and Meth. in Phys. Res. A286, 502–506.

    Google Scholar 

  • Povinec, P.; Usacev, S. (Hrsg.) (1977): Low-Radioactivity Measurements and Applications. Bratislava: Slovenske Pedagogicke Nakladatetstvo.

    Google Scholar 

  • Raghavayya, M. (1981): An inexpensive radon scintillation cell. Health Phys. 40, 894–896.

    Google Scholar 

  • Reus, U.; Westmeier, W.; Warnecke, I. (1979): Gamma-Ray Catalog. Bericht GSI 79-2. Darmstadt: Gesellschaft für Schwerionenforschung.

    Google Scholar 

  • Ricci, E. (1972): Charged-Particle Activation Analysis. In: Lenihan u.a. (Hrsg.): Bd. 2,221–263. London, New York: Academic Press.

    Google Scholar 

  • Rytz, A. (1991): Recommended energy and intensity values of alpha particles from radioactive decay. Atomic Data and Nuclear Data Tables 47, 205–239.

    Google Scholar 

  • Schell, W. R.; Vick, C. E.; Wurtz, E. A. (1981): A Low-Level Laboratory for Alpha and Gamma Counting of Environmental Samples. In: IAEA; 125-149.

    Google Scholar 

  • Schmitt, B. F.; Fusban, H.-U. (1979): Analyse von Kohlenstoff, Stickstoff and Sauerstoff in Refraktärmetallen mit Hilfe der Photonenaktivierung; Metall 33, 1265–1269.

    Google Scholar 

  • Schneider, W. (1973): Neutronenmeßtechnik. Berlin, New York: de Gruyter.

    Google Scholar 

  • Schrader, H.; Weiß, H. M. (1983): Calibration of radionuclide calibrators. Int. J. Nucl. Med. Biol. 10, 121–124.

    Google Scholar 

  • Segebade, C; Weise, H. P.; Lutz, G. J. (1988): Photon activation analysis. Berlin: de Gruyter.

    Google Scholar 

  • Simpson, B. R. S. (1991): Deadtime measurements and associated statistical uncertainty by means of a twodetector paired source method. Appl. Radiat. Isot. 42, 811–814.

    Google Scholar 

  • Smith, D. (1987): Some developments in the Cox-Isham theory of coincidence corrections, including the extension to the computer-discrimination method. Appl. Radiat. Isot. 38, 813–821.

    Google Scholar 

  • Spernol, A.; Lerch, O. (1965): Eine auf 0,2% genaue Zählung von Alphateilchen mit Plastikdetektoren. Nucl. Instr. and Meth. 32, 293–299.

    Google Scholar 

  • Stolz, W. (1990): Radioaktivität — Grundlagen, Messung, Anwendung. München: Hanser.

    Google Scholar 

  • Strauss, M. G.; Sifter, L. L.; Lenkszus, F. R.; Brenner, R. (1968): Ultra stable reference pulser for high resolution spectrometers. IEEE Trans. Nucl. Sci. NS-15(3), 518–531.

    Google Scholar 

  • Theodorsson, P.; Heusser, G. (1991): External guard counters for low-level counting systems. Nucl. Instr. and Meth. in Physics Research B53, 97–100.

    Google Scholar 

  • Tremblay, R.J. u.a. (1979): Measurement of radon progeny concentrations in air by alpha-particle spectrometric counting during and after air sampling. Health Phys. 36, 401–411.

    Google Scholar 

  • UNSCEAR (1988): Sources, Effects and Risks of Ionizing Radiation. New York: United Nations.

    Google Scholar 

  • Unterweger, M. P.; Hoppes, D. D.; Schima, F J. (1992): Nucl. Instr. and Meth. in Phys. Res. A312, 349–352.

    Google Scholar 

  • Vaninbroukx, R.; Spernol, A. (1965): High-precision 4π liquid scintillation counting. Int. J. Appl. Rad. Isot. 16, 289–300.

    Google Scholar 

  • Vincent, S. H. (1973): Random pulse trains, their measurements and statistical properties. IEE Monograph Series 13. London: Peter Peregrinus.

    Google Scholar 

  • von Buttlar, H.; Roth, M. (1990): Radioaktivität: Fakten, Ursachen, Wirkungen. Berlin: Springer.

    Google Scholar 

  • Walz, K. F.; Debertin, K.; Schrader, H. (1983): Half-life measurements at the PTB. Int. J. Appl. Radiat. Isot. 34, 1191–1199.

    Google Scholar 

  • Ward Alter, H.; Fleischer, R. L. (1981): Passive Integrating Radon Monitor for Environmental Monitoring. Health Phys. 40, 693–702.

    Google Scholar 

  • Ward, W. J.; Fleischer, R. L.; Mogro-Campero, A. (1977): Barrier Technique for Separate Measurements of Radon Isotopes. Rev. Sci. Instr. 48, 1440–1441.

    Google Scholar 

  • Wätzig, W.; Westmeier, W. (1978): ALFUN — A program for the evaluation of complex alpha-spectra. Nucl. Instr. and Methods 153, 517–524.

    Google Scholar 

  • Weiß, H. M. (1973): 47t-ionisation chamber measurements. Nucl. Instr. and Methods 112, 291–297.

    Google Scholar 

  • Weiler, R. J. (1981): Analytical measurements of natural lead radiations. Health Phys. 41, 15–22.

    Google Scholar 

  • Winkler, R.; Frenzel, E.; Riihle, H.; Steiner, J. (1991): Schnellmethoden zur Analyse von Plutonium und anderen Aktiniden in Umweltproben. FS-90-51-AKU. Köln: TÜV Rheinland.

    Google Scholar 

  • Wogmann, N. A.; Laul, I. C. (1981): Natural Contamination in Radionuclide Detection Systems. In: Vohra, K. G. u.a. (Hrsg.): Natural Radiation Environment, 384–390. New Delhi: Wiley Eastern.

    Google Scholar 

  • Yang Fu-Chia; Tang Chia-Yong (1978): A General Formula for the Measurement of Concentrations of Radon and Thoron Daughters in Air. Health Phys. 34, 501–503.

    Google Scholar 

  • Zaddach, G. (1973): Katalog von Ge(Li)-y-Spektren. Bericht Jül-914-DE. Jülich: KFA Jülich.

    Google Scholar 

Literatur zu 7.6

  • Alevra, A. V.; Cosack, M.; Hunt, J. B.; Thomas, D. J.; Schraube, H. (1992): Experimental Determination of the Response of Four Bonner Sphere Sets to Monoenergetic Neutrons (II). Radiat. Prot. Dosim. 40, 91–102.

    Google Scholar 

  • Andersen, H. H.; Ziegler, J. F. (Hrsg.) (1977-1980): The stopping and ranges of ions in matter. Bd. 2 (1977).

    Google Scholar 

  • Andersen (1977): Bibliography and index of experimental range and stopping power data. Bd. 3.

    Google Scholar 

  • Andersen u. Ziegler (1977): Hydrogen stopping powers and ranges in all elements. Bd. 4, Ziegler (1977): Helium stopping powers and ranges in all elemental matter. Bd. 5, Ziegler (1980): Handbook of stopping cross-sections for energetic ions in all elements. Bd. 6, Littmark u. Ziegler (1980): Handbook of range distributions for energetic ions in all elements. New York, Frankfurt: Pergamon Press.

    Google Scholar 

  • Andreo, P. (1990): Depth-dose and stopping-power data for mono-energetic electron beams. Nucl. Instr. and Meth. B51, 107–121.

    Google Scholar 

  • Bashkin, S.; Carlson, R. R.; Douglas, R. A.; Jacobs, J. A. (1958): Response of CsI(TI) Crystals to Energetic Particles. Phys. Rev. 109, 434–436.

    Google Scholar 

  • Beckurts, K. H.; Wirtz, K. (1964): Neutron Physics. Berlin, Heidelberg, New York: Springer.

    MATH  Google Scholar 

  • Bensch, F.; Fleck, C. M. (1968): Neutronenphysikalisches Praktikum. Mannheim: Bibliographisches Institut.

    Google Scholar 

  • Berger, M. J.; Seltzer, S. M. (1964): Tables of Energy Losses and Ranges of Electrons and Positrons. NASA SP-3012. Washington, D. C: NASA Administration.

    Google Scholar 

  • Berger, M. J.; Seltzer, S. (1966): Additional Stopping Power and Range Tables for Protons, Mesons and Electrons. NASA SP-3036. Washington, D.C.: NASA Administration.

    Google Scholar 

  • Berger, M. J.; Seltzer, S. M. (1982): Stopping Powers and Ranges of Electrons and Positrons. NBSIR 82-2550. Washington, D.C.: National Bureau of Standards.

    Google Scholar 

  • Birks, J. B. (1964): The Theory and Practice of Scintillation Counting. Oxford: Pergamon Press.

    Google Scholar 

  • Bluhm, H. (1974): A β-Discriminating 3He-Semiconductor Sandwich Spectrometer. Nucl. Instr. and Meth. 115, 325–337.

    Google Scholar 

  • Brahme, A.; Kraepelien, T.; Svensson, H. (1980): Electron and photon beams from a 50 MeV racetrack microtron. Acta radiol. Oncology 19, 305–319.

    Google Scholar 

  • Buneman, O.; Cranshaw, T. E.; Harvey, J. A. (1949): Design of Grid Ionization Chambers. Can. J. Res. A27, 191–206.

    Google Scholar 

  • Cole, A. (1969): Absorption of 20-eV to 50000-eV Electron Beams in Air and Plastic. Radiation Res. 38, 7–33.

    Google Scholar 

  • Craun, R. L.; Smith, D. L. (1970): Analysis of Response Data for Several Organic Scintillators. Nucl. Instr. Meth. 80, 239–244.

    Google Scholar 

  • Cross, W. G.; Ing, H. (1987): Neutron Spectroscopy. In: Kase, K. R.; Bjerngard, B.; Attix, F. K. (Hrsg.) (1987): The Dosimetry of Ionizing Radiation, Vol. II, 91–157. New York: Academic Press.

    Google Scholar 

  • Debertin, K.; Helmer, R. G. (1988): Gamma-and X-Ray Spectrometry with Semiconductor Detectors. Amsterdam: North-Holland.

    Google Scholar 

  • Delaney, C. F. G.; Finch, E. C. (1992): Radiation Detectors. Oxford: Clarendon.

    Google Scholar 

  • DePangher, J.; Nichols, L. L. (1966): A Precision Long Counter for Measuring Fast Neutron Flux Density. Report BNWL-260. Richland, Washington: Batelle North-West Laboratory.

    Google Scholar 

  • Dietze, G.; Klein, H. (1982): NRESP4 and NEFF4, Monte Carlo Codes for the Calculation of Neutron Response Functions and Detection Efficiencies or NE213 Scintillation Detectors. PTB-Bericht ND-22. Braunschweig: PTB.

    Google Scholar 

  • DIN 6809, Teil 1 (1976): Klinische Dosimetric Therapeutische Anwendung gebündelter Röntgen-, Gamma-und Elektronenstrahlung. Berlin: Beuth.

    Google Scholar 

  • Drosg, A. (1972): Accurate Measurements of the Counting Efficiency of an NE 213 Neutron Detector between 2 and 26 MeV. Nucl. Instr. and Meth. 105, 573–584.

    Google Scholar 

  • Engelkemeir, D. (1956): Nonlinear Response of Nal(TI) to Photons. Rev. Sci. Instr. 27, 589–591.

    Google Scholar 

  • Ferguson, A. T. G. (1960): Gas Recoil Counters. In: Marion, J. B.; Fowler, J. L. (Hrsg.): Neutron Physics. New York: Interscience.

    Google Scholar 

  • Filss, P. u.a. (1970): Kernphotoprozesse im Sauerstoff und ihre Bedeutung für die Kontrolle der Energie und des Photonenspektrums an Elektronenbeschleunigern. Z. Physik 239, 461–470.

    Google Scholar 

  • Filss, P. u.a. (1971): Ein Umlaufsystem zur kontinuierlichen Aktivierung flüssiger und gasförmiger Proben, insbesondere an Elektronenbeschleunigern. Nucl. Instr. and Meth. 91, 1–4.

    Google Scholar 

  • Firk, F. W. K. (1979): Neutron Time-of-Flight Spectrometers. Nucl. Instr. and Meth. 162, 539–565.

    Google Scholar 

  • Fuller, E.G. u.a. (1973): Photonuclear Reaction Data. NBS Special Publication 380. Washington, D.C.: National Bureau of Standards.

    Google Scholar 

  • George, F. J. St.; Anderson, D.W. (1982): Energy Calibration of a Linear Accelerator with Photonuclear Reactions. Med. Phys. 9, 414.

    Google Scholar 

  • Graham, R.L.; Ewan, G.T.; Geiger, J. S. (1960): A one-meter-radius iron-free double-focusing π√2spectrometer for β-ray spectroscopy with a precision of 1: 105. Nucl. Instr. and Meth. 9, 245–286.

    Google Scholar 

  • Groß, M.; Jürgens, P.; Keyser, U.; Kluge, S.; Mehrtens, M.; Müller, S.; Münnich, F.; Wulff, J.; Faust, H.R. (1992): Determination of high Q²-values by beta-gamma coincidence measurements with a plastic scintillator telescope. Nucl. Instr. and Meth. A311, 512–519.

    Google Scholar 

  • Grosshoeg, G. (1979): Neutron Ionisation Chambers. Nucl. Instr. and Meth. 162, 125–160.

    Google Scholar 

  • Großwendt, B.; Waibel, E. (1976): Monte Carlo Calculation of the Intrinsic Gamma Ray Efficiencies of Cylindrical NaI(TI) Detectors. Nucl. Instr. and Meth. 133, 25–28.

    Google Scholar 

  • Großwendt, B.; Waibel, E. (1982): The Influence of Charge Carrier Diffusion on the Ionometric Determination of Electron Ranges in the Low Energy Region. Nucl. Instr. and Meth. 197, 401–409.

    Google Scholar 

  • Halbert, R. L. (1957): Fluorescent Response of CsI(TI) to Energetic Nitrogen Ions. Phy. Rev. 107, 647–649.

    Google Scholar 

  • Harder, D.; Poschet, G. (1967): Transmission und Reichweite schneller Elektronen im Energiebereich 4 bis 30 MeV. Phys. Lett. 24 B, 519–521.

    Google Scholar 

  • Harrison, K. G. (1981): The Calibration of Neutron Detectors with Spherical Moderators. Nucl. Instr. and Meth. 184, 595–597.

    Google Scholar 

  • Harvey, J. A.; Hill, N. W. (1976): Scintillation Detectors for Neutron Physics Research. Nucl. Instr. and Meth. 162, 507–529.

    Google Scholar 

  • Heath, R. L. (1964): Scintillation Spectrometry Gamma-Ray Spectrum Catalogue, AEC-Report IDO-16880-1. U.S. Atomic Energy Commission, Idaho Operations Office.

    Google Scholar 

  • Higgins, P.D.; Attix, F. H.; Hubbell, J. H.; Seltzer, S. M.; Berger, M. J.; Sibata, C. H. (1992): Mass energy-transfer and mass energy-absorption coefficients, including in-flight positron annihilation for photon energies 1 keV to 100 MeV. NISTIR 4812, Gaithersburg: Nat. Inst. Stand. Technol.

    Google Scholar 

  • Hoenen, F. (1984): Spherical Ionization Chambers with Improved Energy Resolution for Neutron Spectroscopy. Nucl. Instr. and Meth. 223, 150–154.

    Google Scholar 

  • Hopkins, J.C; Breit, G. (1971): The lH(n,n)1H Scattering Observables Required for High-precision Fastneutron Measurements. Nuclear Data Tables A9, 137–145.

    Google Scholar 

  • Hubbell, J. H. (1982): Photon Mass Attenuation and Energy-Absorption Coefficients from 1 keV to 20 MeV. Int. J. Appl. Radiat. Isot. 33, 1269–1290.

    Google Scholar 

  • Hubert, F.; Bimbot, R.; Gauvin, H. (1990): Range and Stopping-power Tables for 2.5-500 MeV/nucleon Heavy Ions in Solids. Atomic Data and Nucl. Data Tables 46, 1–213.

    Google Scholar 

  • Hunt, J. B. (1976): The Calibration and Use of Long Counters for the Accurate Measurement of Neutron Flux Density. Report NPL-RS 5. Teddington: National Physical Laboratory.

    Google Scholar 

  • Hunt, J. B.; Harrison, K. G.; Wilson, R. (1980): Calibration of a De Pangher Long Counter and two Neutron Survey Monitors at 21.5 keV. Nucl. Instr. and Meth. 169, 477–482.

    Google Scholar 

  • Hunt, J. B.; Mercer, R. A. (1978): The Absolute Calibration of a Long Counter by Associated Activity Technique. Nucl. Instr. and Meth. 156, 451–457.

    Google Scholar 

  • ICRU 37 (1984): Stopping powers for electrons and positrons. ICRU Report 37. Bethesda, MD: ICRU Publications.

    Google Scholar 

  • ICRU 49 (1993): Stopping powers and ranges for protons and alpha particles. ICRU Report 49. Bethesda, MD: ICRU Publications.

    Google Scholar 

  • Iskef, H.; Cunningham, J.W.; Watt, D.E. (1983): Projected ranges and effective stopping powers of electrons with energy between 20 eV and 10 keV. Phys. Med. Biol. 28, 535–545.

    Google Scholar 

  • Israel, H. L; Lier, D. W.; Storm, E. (1971): Comparison of Detectors Used in Measurement of 10 to 300 keV X-Ray Spectra. Nucl. Instr. and Meth. 91, 141–157.

    Google Scholar 

  • Jaeger, R. G.; Hübner, W. (Hrsg.) (1974): Dosimetric und Strahlenschutz. Stuttgart: Thieme.

    Google Scholar 

  • Janni, J. F. (1982): Proton range-energy tables, 1 keV-10 GeV, energy loss, range, path length, time-of-flight, straggling, multiple scattering, and nuclear interaction probability. Atomic Data and Nucl. Data Tables 27, 147–339 und 341-529.

    Google Scholar 

  • Jelley, J. V. (1958): Čerenkov-Radiation and its Application. London: Pergamon Press.

    Google Scholar 

  • Jeter, T. R. (1967): Recent Improvements in Helium-3 Solid State Neutron Spectrometry. IEEE Trans. Nucl. Sci. NS-14, 422–427.

    Google Scholar 

  • Johnson, R. H.; Ingersoll, D.T.; Wehring, B.W.; Doming, J.J. (1977): NE213 Neutron Spectrometry System for Measurements from 1 to 20 MeV. Nucl. Instr. and Meth. 145, 337–346.

    Google Scholar 

  • Kleinknecht, K. (1992): Detektoren für Teilchenstrahlung. Stuttgart: Teubner.

    Google Scholar 

  • Klinken, J. van; Feenstra, S.J. (1978): Wedge-shaped SmCo5 Magnets for Mini-orange Spectrometers. Nucl. Instr. and Meth. 151, 433–438.

    Google Scholar 

  • Kluge, H.; Weise, K. (1982): The Neutron Energy Spectrum of a 241Am-Be(α,n) Source and Resulting Mean Fluence to Dose Equivalent Conversion Factors. Radiat. Prot. Dosim. 2, 85–93.

    Google Scholar 

  • Knauf, K.; Alevra, A. V.; Klein, H.; Wittstock, J. (1989): Neutronenspektrometrie im Strahlenschutz. PTB-Mitteil. 99, 101–106.

    Google Scholar 

  • Knoll, G. F. (1989, 1992): Radiation Detection and Measurement. New York: Wiley.

    Google Scholar 

  • Kramer, H. M.; von Seggern, H. (1983): The Determination of X-ray Spectra from Attenuation Data, Part I: The Potentials of Various Methods. Nucl. Instr. and Meth. 213, 373–380.

    Google Scholar 

  • Lederer, C. M.; Shirley, V. S. (1978): Table of Isotopes. New York: Wiley.

    Google Scholar 

  • Liskien, H.; Paulsen, A. (1969): Determination of 1 MeV Neutron Fluxes from the T(p, n)3 He Reaction by the Associated Particle Method. Nucl. Instr. and Meth. 69, 70–76.

    Google Scholar 

  • Mares, V.; Schraube, G.; Schraube, H. (1991): Calculated Neutron Response of a Bonner Sphere Spectrometer with 3He Counter. Nucl. Instr. Meth. in Physics Res. A307, 398–412.

    Google Scholar 

  • Martens, H.; Seeger, W. (1980): Ein Cerenkov-Detektor zur Energiebestimmung an Elektronenbeschleunigern. Strahlentherapie 156, 697–702.

    Google Scholar 

  • McDaniel, E. W.; Mason, E. A. (1973): The Mobility and Diffusion of Ions in Gases. New York, London, Sydney, Toronto: John Wiley.

    Google Scholar 

  • Mladjenovic, M. S. (1976): Development of Magnetic β-ray Spectroscopy. Lecture Notes in Physics, Vol. 52. Berlin, Heildelberg, New York: Springer.

    Google Scholar 

  • Mladjenovic, M.S. (1979): Magnetic Electron Spectrometers and their In-beam Use. Nucl. Instr. and Meth. 162, 193–209.

    Google Scholar 

  • Nachtigall, D.; Burger, G. (1972): Dose Equivalent Determination in Neutron Fields by Means of Moderator Techniques. In: Attix, F. H. u.a., Hrsg.: Topics in Radiation Dosimetry, 385–451. New York — London: Academic Press.

    Google Scholar 

  • Nakamura, T. (1980): Bremsstrahlung Spectrum Analysis by Activation Method. Phys. Science 3, 409–441 and 474-476.

    Google Scholar 

  • Neuert, H. (1966): Kernphysikalische Meßverfahren. Karlsruhe: Braun.

    Google Scholar 

  • Ogawa, I. (1961): Waveforms and Pulse-height Distributions of the Grid Pulses from Gridded Ionization Chambers. Supp. Nuovo Chim. 21, Ser. 10, 69–86.

    Google Scholar 

  • Owen, J. G.; Weaver, D. R.; Walker, J. (1981): The Calibration of a 3 He-Spectrometer and its Use to Measure the Neutron Spectrum from an Am/Li Source. Nucl. Instr. and Meth. 188, 579–593.

    Google Scholar 

  • Plechaty, E. F.; Cullen, D. E.; Howerton, R. J. (1975): Tables and graphs of photon interaction cross sections from 1.0 keV to 100 MeV derived from the LLL evaluated nuclear data library. UCRL — 50400, Vol. 6, Rev. 1. Livermore: Lawrence Livermore Laboratory.

    Google Scholar 

  • Pohlit, W. (1965): Dosimetric zur Betatrontherapie. Stuttgart: Georg Thieme.

    Google Scholar 

  • Profio, A. E. (1976): Experimental Reactor Physics. New York, London, Sidney, Toronto: Wiley.

    Google Scholar 

  • Renner, C.; Hill, N. W.; Morgan, G. L.; Rush, K.; Harvey, J. A. (1978): Absolute Neutron Flux Measurements Using an NE 110 Scintillation Detector. Nucl. Instr. and Meth. 154, 525–533.

    Google Scholar 

  • Rickard, I. C. (1970): Neutron Spectrometry in the Energy Range 1–100 keV Using the 6Li Sandwich Spectrometer. Nucl. Instr. and Meth. 82, 287–288.

    Google Scholar 

  • Rickard, I. C. (1972): The Use of the Lithium-6 Semiconductor Sandwich Spectrometer for the Measurement of fast Neutron Spectra. Nucl. Instr. and Meth. 105, 397–411.

    Google Scholar 

  • Rudstam, G. (1980): The Uncertainty of Neutron Energy Spectra Deduced from Measured Pulse Spectra in a 3He-Spectrometer. Nucl. Instr. and Meth. 177, 529–536.

    Google Scholar 

  • Ryves, T. B. (1976): A Proton Recoil Telescope for 12-20 MeV Neutrons. Nucl. Instr. and Meth. 135, 455–458.

    Google Scholar 

  • Schafroth, S. M. (1967): Scintillation Spectroscopy of Gamma Radiation. London: Gordon and Breach.

    Google Scholar 

  • Schneider, W. (1973): Neutronenmeßtechnik, Berlin, New York: de Gruyter.

    Google Scholar 

  • Schraube, A.; Grünauer, F.; Burger, G. (1973): Calibration Problems with Neutron Moderator Detectors. In: Neutron Monitoring for Radiation Protection Purposes, Bd. II, 453–464. STI/PUB/313. Wien: IAEA.

    Google Scholar 

  • Schuhmacher, H.; Brede, H. J.; Henneck, R.; Kunz, A.; Meulders, J. P.; Pihel, P.; Schrewe, U. J. (1992): Measurement of Neutron Kerma Factors for Carbon and A-150 Plastic at Neutron Energies of 26.3 MeV and 37.8 MeV. Phys. Med. Biol. 37, 1265–1281.

    Google Scholar 

  • Sevier, K. D. (1972): Low Energy Electron Spectrometry. New York, London, Sydney, Toronto: Wiley-Interscience, John Wiley.

    Google Scholar 

  • Siegbahn, K. (Hrsg.) (1965): Alpha-, Beta-and Gamma-ray Spectroscopy, Vol. 1. Amsterdam: North Holland.

    MATH  Google Scholar 

  • Sipilä, H. (1976): Energy Resolution of the Proportional Counter. Nucl. Instr. and Meth. 133, 251–252.

    Google Scholar 

  • Thompson, I. M. G.; Lavender, A. (1973): Calibration of the De Pangher Long Counter. In: Neutron Monitoring for Radiation Protection Purposes, Bd. II, 465–483. STI/PUB/313. Wien: IAEA.

    Google Scholar 

  • Toms, M. E. (1973): Photonuclear Activation Analysis with Ge(Li) Detectors, a Compilation: NRL Report 7554; Compilation II: NRL Report 7591. Washington, D. C: Naval Research Laboratory.

    Google Scholar 

  • Tornow, W.; Huck, H.; Köber, H.-J.; Mertens, G. (1976): Properties of High Pressure Nitrogen-Argon and Nitrogen-Xenon Gas Scintillators. Nucl. Instr. and Meth. 133, 435–443.

    Google Scholar 

  • Turner, J. E. (1986): Atoms, Radiation and Radiation Protection. New York, Oxford, Toronto, Sydney, Frankfurt: Pergamon Press.

    Google Scholar 

  • Verbinski, V. V.; Giovanni, R. (1974): Proportional Counter Characteristics and Application to Reactor Neutron Spectrometry. Nucl. Instr. and Meth. 114, 205–231.

    Google Scholar 

  • Waibel, E.; Großwendt, B. (1975): Determination of Detector Efficiencies for Gamma Ray Energies up to 12 MeV. Nucl. Instr. and Meth. 131, 133–141.

    Google Scholar 

  • Waibel, E.; Großwendt, B. (1977): Zur Technik der Bestimmung von W-Werten in Gasen. PTB-Mitt. 87, 13–21.

    Google Scholar 

  • Zsolnay, E. M.; Nolthenius, H.J.; Greenwood, L. R.; Szondi, E. J. (1992): Reference Data File for Neutron Spectrum Adjustment and Related Damage Calculations. In: Proc. of Seventh ASTM-EURATOM Symposium on Reactor Dosimetry, 299–306. Dordrecht, Boston, London: Kluwer Academic Publishers.

    Google Scholar 

  • Zullinger, H. R.; Middleman, L. M.; Aitken, D. W. (1969): Linearity and Resolution of Semiconductor Radiation Detectors. IEEE Trans. Nucl. Sci. NS 16, 47–61.

    Google Scholar 

Literatur zu 7.7

  • Abramowicz, H. u.a. (1981): The Response and Resolution of an Iron-Scintillator Calorimeter for Hadronic and Electromagnetic Showers between 10 GeV and 140 GeV. Nucl. Instr. Meth. 180, 429–439.

    Google Scholar 

  • Aderholz, M. (1974): High-Resolution Ionization Measurements in the Region of the Relativistic Rise. Nucl. Instr. Meth. 118, 419–430.

    Google Scholar 

  • Allison, W. W. M.; Cobb, J. H. (1980): Relativistic Charged Particle Identification by Energy Loss. Ann. Rev. Nucl. Part. Science 30, 253–298.

    Google Scholar 

  • Bathow, G. u.a. (1970): Measurements of the Longitudinal and Lateral Development of Electromagnetic Cascades in Lead, Copper and Aluminium at 6 GeV. Nucl. Phys. B 20, 592–602.

    Google Scholar 

  • Breskin, A. u.a. (1974): Further Results on the Operation of High-Accuracy Drift Chambers, Nucl. Instr. Meth. 119, 9–28.

    Google Scholar 

  • Cerenkov, P. A. (1964): Radiation of particles moving at a velocity exceeding that of light, and some of their possibilities for their use in experimental physics, Nobel lecture 1958. In: Nobel Lectures Physics 1942–1962, S. 426–441. Amsterdam: Elsevier.

    Google Scholar 

  • Charpak, G. u.a. (1968): The Use of Multiwire Proportional Counters to Select and Localize Charged Particles. Nucl. Instr. Meth. 62, 262–268.

    Google Scholar 

  • Charpak, G. u.a. (1970): Some Developments in the Operation of Multiwire Proportional Chambers. Nucl. Instr. Meth. 80, 13–34.

    Google Scholar 

  • Charpak, G. u.a. (1978): Progress in High-Accuracy Proportional Chambers. Nucl. Instr. Meth. 148, 471–482.

    Google Scholar 

  • Conversi, M.; Federici, L. (1978): Flash Chambers of Plastic Material. Nucl. Instr. Meth. 151, 93–102.

    Google Scholar 

  • Damerell, C. J. S. u.a. (1981): Charge-coupled devices for particle detection with high spatial resolution, Nucl. Instr. Meth. 185, 33–42.

    MathSciNet  Google Scholar 

  • Dykes, M. u.a. (1981): Holographic Photography of Bubble Chamber Tracks: A Feasibility Test. Nucl. Instr. Meth. 179, 487–493.

    Google Scholar 

  • Ekelof, T. u.a. (1981): The Cerenkov Ring-Imaging Detector: Recent Progress and Future Development. Phys. Scripta 23, 718–726.

    Google Scholar 

  • Erskine, G. A. (1972): Electrostatic Problems in Multiwire Proportional Chambers. Nucl. Instr. Meth. 105, 565–572.

    Google Scholar 

  • Fabjan, C. W. u.a. (1977): Iron Liquid-Argon and Uranium Liquid-Argon Calorimeters for Hadron Energy Measurement. Nucl. Instr. Meth. 141, 61–80.

    Google Scholar 

  • Fabjan, C. W.; Fischer, H. G. (1980): Particle Detectors. Rep. Progr. Phys. 43, 1003–1063.

    Google Scholar 

  • Harigel, G. u.a. (1961): Typische Blasenkammerbilder mit relativistischen Elektronen für Energien unter 30 MeV. Z. angew. Physik 13, 217–223.

    Google Scholar 

  • Holder, M. u.a. (1978): Performance of a Magnetized Total Absorption Calorimeter between 15 GeV and 140 GeV. Nucl. Instr. Meth. 151, 69–80.

    Google Scholar 

  • Hyams, B. u.a. (1983): A silicon counter telescope to study short-lived particles in high-energy hadronic Interactions, Nucl. Instr. Meth. 205, 99–105.

    Google Scholar 

  • Kleinknecht, K. (1992): Detektoren für Teilchenstrahlung (Teubner Studienbücher) Stuttgart: Teubner.

    Google Scholar 

  • Lehraus, I. u.a. (1978): Performance of a Large Scale Multilayer Ionization Detector and its Use for Measurements of the Relativistic Rise in the Momentum Range of 20–110 GeV/c. Nucl. Instr. Meth. 153, 347–355.

    Google Scholar 

  • Litt, J; Meunier, R. (1973): Cerenkov Counter Technique in High-Energy Physics. Ann. Rev. Nucl. Science 23, 1–43.

    Google Scholar 

  • Schilly, P. u.a. (1971): Construction and Performance of Large Multiwire Proportional Chambers. Nucl. Instr. Meth. 91, 221–230.

    Google Scholar 

  • Sternheimer, R. M.; Peierls, R. F. (1971): General Experession for the Density Effect for the Ionization Loss of Charged Particles. Phys. Rev. B3, 3681–3692.

    Google Scholar 

  • Taylor, F. E. u.a. (1978): A Fine Grain Flash Chamber Calorimeter, IEEE Trans. Nucl. Sci. NS 25, 312–320.

    Google Scholar 

  • Walenta, A. H. u.a. (1971): The Multiwire Drift Chamber; A new Type of Proportional Wire Chamber. Nucl. Instr. Meth. 92, 373–380.

    Google Scholar 

Literatur zu 7.8

  • AAPM (1983, 1984): A protocol for the determination of absorbed dose from high-energy photon and electron beams. American Association of Physicists in Medicine. Med. Phys. 10 (1983) 741–771.

    Google Scholar 

  • AAPM (1983, 1984): A protocol for the determination of absorbed dose from high-energy photon and electron beams. American Association of Physicists in Medicine. Med. Phys. 11 (1983) 213.

    Google Scholar 

  • AAPM (1983, 1984): A protocol for the determination of absorbed dose from high-energy photon and electron beams. Ergänzung: Med. Phys. 11 (1984) 547–551.

    Google Scholar 

  • AAPM (1991): American Association of Physicists in Medicine, Task Group 25. Clinical electron beam dosimetry. Report of AAPM Radiation Therapy Committee Task Group No. 25. Med. Phys. 18, 73–109.

    Google Scholar 

  • Alberts, W.; Ambrosi, P.; Böhm, J.; Dietze, G.; Hohlfeld, K.; Will, W. (1994): Neue Dosismeßgrößen im Strahlenschutz. PTB-Bericht Dos-23. Bremerhaven: Wirtschaftsverlag.

    Google Scholar 

  • Allisy, A. (1967): Contribution á 1a measure de l’exposition produite par les photons émis par le 60Co. Metrologia 3, 41–51.

    Google Scholar 

  • Alm Carlsson, G. (1985): Theoretical basis for dosimetry. In: Kase, K. R. u.a. (Hrsg.): The Dosimetry of Ionizing Radiation. Vol. I, 1–75, London: Academic Press.

    Google Scholar 

  • Andersson, I. Ö.; Braun, J. (1964): A Neutron Rem Counter. Nukleonik 6, 237–241.

    Google Scholar 

  • Andreo, P.; Brahme, A. (1981): Mean energy in electron beams. Med. Phys. 8, 682–687.

    Google Scholar 

  • Andreo, P.; Brahme, A. (1986): Stopping power data for high energy photon beams. Phys. Med. Biol. 31, 839–858.

    Google Scholar 

  • Andreo, P.; Nahum, A. E.; Brahme, A. (1986): Chamber-dependent wall correction factors in dosimetry. Phys. Med. Biol. 31, 1189–1199.

    Google Scholar 

  • Andreo, P.; Fransson, A. (1989): Stopping power ratios and their uncertainties for clinical electron beam dosimetry. Phys. Med. Biol. 34, 1847–1861.

    Google Scholar 

  • Anthony, K.; Blunndatt, H.; Paliwal, R.; Attix, F. H. (1986): Charge storage in electron irradiated phantom materials. Med. Phys. 13, 99–100.

    Google Scholar 

  • Apfel, R. E.; Roy, S. C. (1984): Investigations of superheated drop detection in neutron detection. Nucl. Instrum. Meth. 219, 582–587.

    Google Scholar 

  • Attix, F.H.; Roesch, W.C; Tochilin, E. (Hrsg.) (1966–1972): Radiation Dosimetry, Bd. I (1968): Fundamentals. Bd. II (1966): Instrumentation. Bd. III (1969): Sources, Fields, Measurements and Applications, Supplement 1 (1972): Topics in Radiation Dosimetry. New York, London: Academic Press.

    Google Scholar 

  • Auxier, J. A.; Snyder, W. S.; Jones, D. T. (1968): Neutron Interactions and Penetration in Tissue. Attix, F. H. u.a. (Hrsg.): Bd. I, 275-316.

    Google Scholar 

  • Barelaud, B.; Paul, D.; Dubarry, B.; Makovicka, L.; Decossas, J. L.; Vareille, J. C(1992): Principles of an electronic neutron dosemeter using a PIPS detector. Radiat. Prot. Dosim. 44, 363–366.

    Google Scholar 

  • BCRU (1982): Memoranda from the British Committee on Radiation Units and Measurements. Use of Air Kerma for Photon Dosimetry in Air. Brit. J. Radiol. 55, 375–376.

    Google Scholar 

  • Becker, A.; Holthusen, H.(1921): Über die Trägererzeugung hochfrequenter Wellenstrahlung in Gasräumen. Ann. Physik 64, 625–645.

    Google Scholar 

  • Berger, M. J. (1983): Persönliche Mitteilung an die “American Association of Physicists in Medicine” (AAPM), zitiert in AAPM (1983).

    Google Scholar 

  • Boag, J. W. (1987): Ionization chambers. In: Käse, K. R. u.a. (Hrsg.): The Dosimetry of Ionizing Radiation. Vol. II, 169–243, London: Academic Press.

    Google Scholar 

  • Böhm, J. (1986): The National Primary Standard of the PTB for Realizing the Unit of the Absorbed Dose Rate to Tissue for Beta Radiation. PTB-Dos-13. Braunschweig: PTB.

    Google Scholar 

  • Böhm, J.; Schneider, U. (1986): Review of Extrapolation Chamber Measurements of Beta Rays and Low Energy X-Rays. Radiat. Prot. Dos. 14, 193–198.

    Google Scholar 

  • Brahme, A.; Svensson, H.(1976): Specification of electron beam quality from the central axis depth absorbed dose distribution. Med. Phys. 3, 95–102.

    Google Scholar 

  • Brahme, A.; Nilsson, B. (1979): Absorbed dose from secondary electrons in high energy photon beams. Phys. Med. Biol. 24, 901–919.

    Google Scholar 

  • Brahme, A.; S vensson, H. (1979): Radiation beam characteristics of a 22 MeV microtron. Acta Radiol. Oncol. 18, 244–272.

    Google Scholar 

  • Brahme, A.; Kraepelin, T.; Svensson, H. (1980): Electron and photon beams from a 50 MeV racetrakt microtron. Acta Radio. Oncol. 19, 305–319.

    Google Scholar 

  • Brahme, A.; Andreo, P. (1986): Dosimetry and quality specification of high energy photon beams. Acta Radiol. Oncol. 25, 213–223.

    Google Scholar 

  • Brit. J. Radiol. Suppl. No. 17 (1983): Central Axis Depth Dose Data for Use in Radiotherapy. London: British Inst, of Radiology.

    Google Scholar 

  • Broerse, J.J. (Hrsg.) (1980): Ion Chambers for Neutron Dosimetry. EUR 6782, Luxembourg: Kom. Europ. Gem.

    Google Scholar 

  • Broerse, J.J.; Mijnheer, B.J.; Williams, J. R. (1981): European Protocol for Neutron Dosimetry for External Beam Therapy. Brit. J. Radiol. 54, 882–898.

    Google Scholar 

  • Bruinvis, I. A. D.; Heukelom, S.; Mijnheer, B. J. (1985): Comparison of ionization measurements in water and polystyrene for electron beam dosimetry. Phys. Med. Biol. 30, 043–1053.

    Google Scholar 

  • Burkhardt, W.; Herrmann, D. (1960): Zur Eichung von Beta-Dosismeßgeräten. Atomkernenergie 5, 324–332.

    Google Scholar 

  • Burgkhardt, B.; Piesch, E. (1988): Field calibration Technique for Albedo Neutron Dosemeters. Radiat. Prot. Dosim. 23, 121–126.

    Google Scholar 

  • Caswell, R. S.; Coyne, J. J.; Randolph, M. L. (1980): Kermafactors for Neutron Energiers below 30 MeV. Radiat. Res. 83, 217–254.

    Google Scholar 

  • Catterall, M.; Bewley, D. (1979): Fast Neutrons in the Treatment of Cancer. New York: Academic Press.

    Google Scholar 

  • CEC (1989, 1990): Intercomparison of environmental gamma dose rate meters, Part I, EUR 11665 EN (1989); Part II, EUR 12731 EN (1990). Luxembourg: Kom. Europ. Gem.

    Google Scholar 

  • Constantinou, C. u.a. (1982): A solid water phantom material for radiotherapy X-ray and γ-ray beam calibrations. Med. Phys. 9, 436–441.

    Google Scholar 

  • Cosack, M.; Lesiecki, H. (1985): Dose equivalent survey meters. Radiat. Prot. Dosim. 10, 111–119.

    Google Scholar 

  • De Campo, J. A.; Beck, H. L.; Raft, P. D. (1972): High Pressure Argon Ionization Chamber System for the Measurement of Environmental Exposure Rates. Report HASL-260. New York: US Atomic Energy Commission Health and Safety Laboratory.

    Google Scholar 

  • Derikum, K.; Roos, M. (1991): Messung des Polaritätseffektes von Ionisationskammern bei hochenergetischer Elektronenstrahlung. In: Jordan, K. (Hrsg.): Med. Physik 91, 162-163.

    Google Scholar 

  • Derikum, K.; Roos, M. (1993): Determination of radiation quality Parameters for high energy photons and electrons using different types of detectors. IAEA Symp., IAEA-SM-330/46. Wien: IAEA.

    Google Scholar 

  • DGMP — Bericht Nr. 6 (1989): Praktische Dosimetric von Elektronenstrahlung u. ultraharter Röntgenstrahlung (B. Markus Hrsg.): Zu beziehen von Dr. H. Wendhausen, Radiol. Univ.-Klinik, Arnold-Heller-Str. 9, D-24105 Kiel.

    Google Scholar 

  • Dierker, J. (1981): Kalibrierkorrektion bei Weichstrahlmessungen im Phantom. In: Med. Phys. 81 (E. Bunde Hrsg.), 111–116. Heidelberg: Hüthig.

    Google Scholar 

  • DIN (Hrsg.) (1994): Internationales Wörterbuch der Metrologie. Berlin: Beuth.

    Google Scholar 

  • DIN 1319, Teil 1, 3 (1995): Grundlagen der Meßtechnik. Teil 1: Grundbegriffe, Teil 3: Auswertung von Messungen einer einzelnen Meßgröße; Meßunsicherheit, Entwurf. Berlin: Beuth.

    Google Scholar 

  • DIN 1319, Teil 4 (1985): Grundbegriffe der Meßtechnik. Behandlung von Unsicherheiten bei der Auswertung von Messungen. Berlin: Beuth.

    Google Scholar 

  • DIN 6800, Teil 1, 3–6 (1980): Dosismeßverfahren in der radiologischen Technik. Teil 1: Allgemeines zur Dosimetric von Photonen-und Elektronenstrahlung nach der Sondenmethode (1980). Teil 3: Eisensulfatdosimetrie. Teil 4: Filmdosismetrie. Teil 5: Thermolumineszenz-Dosimetrie. Teil 6: Photolumineszenz-Dosimetrie. Berlin: Beuth.

    Google Scholar 

  • DIN 6800, Teil 2 (1996): Dosismeßverfahren nach der Sondenmethode für Photonen-und Elektronenstrahlung. Ionisationsdosimetrie. Berlin: Beuth.

    Google Scholar 

  • DIN 6802, Teil 1 (1991): Neutronendosimetrie, Spezielle Begriffe und Benennungen. Berlin: Beuth.

    Google Scholar 

  • DIN 6809, Teil 1–5 (1976–1994): Klinische Dosimetric. Teil 1: Therapeutische Anwendung gebündelter Röntgen-, Gamma-und Elektronenstrahlen (1976). Teil 3: Röntgendiagnostik (1990). Teil 4: Anwendung von Röntgenstrahlen mit Röhrenspanungen von 10 bis 100 kV in der Strahlentherapie und in der Weichstrahldiagnostik (1988). Teil 5 (Entwurf): Anwendung von Röntgenstrahlen mit Röhrenspannungen von 100 bis 400 kV in der Strahlentherapie (1994). Berlin: Beuth.

    Google Scholar 

  • DIN 6812 Entw. (1994): Medizinische Röntgenanlagen bis 300 kV; Strahlenschutzregeln für die Errichtung. Berlin: Beuth.

    Google Scholar 

  • DIN 6814, Teil 3, 5, 8 (1983–1995): Begriffe und Benennungen in der radiologischen Technik. Teil 3: Dosisgrößen und Dosiseinheiten (1985); Teil 3/A2, Entw.: Änderung 2 (1995). Teil 5: Strahlenschutz (1983 u. Entwurf 1995). Teil 8: Strahlentherapie, Entwurf (1994). Berlin: Beuth.

    Google Scholar 

  • DIN 6817 (1984): Dosimeter mit Ionisationskammern für Photonen-und Elektronenstrahlung zur Verwendung in der Strahlentherapie. Berlin: Beuth.

    Google Scholar 

  • DIN 6818, Teil 1-5 (1979–1994): Strahlenschutzdosimeter; Teil 1: Allgemeine Regeln (1992). Teil l/Al Entw.: Allgemeine Regeln. Änderung 1 (1995). Teil 2: Direkt ablesbare Ionisationskammer-Stabdosimeter für Gamma-und Röntgenstrahlung (1992). Teil 3: Nicht direkt ablesbare Ionisationskammer-Stabdosismeter für Gamma-und Röntgenstrahlung (1979). Teil 4: Tragbare Ionisationskammer-Stabdosimeter für Gamma-und Röntgenstrahlung (1993). Teil 5: Zählrohr-Dosisleistungsmesser für Röntgen-und Gammastrahlung (1994). Berlin: Beuth.

    Google Scholar 

  • DIN 6819 (1991): Meßgeräte zur Bestimmung des Flächendosisproduktes in der Röntgendiagnostik; Regeln für die Herstellung. Berlin: Beuth.

    Google Scholar 

  • DIN 6827 Teil 1 (1993): Protokollierung bei der medizinischen Anwendung ionisierender Strahlen: T. 1 Therapie mit Röntgen-, Gamma-und Elektronenbestrahlungseinrichtungen Berlin: Beuth.

    Google Scholar 

  • Ding, G.X.; Rogers, D. W. O. (1995): Calculation of Stopping-Power Ratios Using Realistic Clinical Electron Beams. Med. Phys. 22, 489.

    Google Scholar 

  • Dudley, R. A. (1966): Dosimetry with photographic emulsion. In: Attix u.a. (Hrsg.): Bd. II, 325-387 Eichordnung (1988, 1992): Allgemeine Vorschriften vom 12. August 1988 (BGBl. I, S. 1657-1666) einschließlich der Änderungen vom 24. September 1992 (BGBl. I, S. 1653-1684) und vom 19. November 1992 (BGBl. I, S. 1931–1935).

    Google Scholar 

  • Eisen, Y.; Karpinovitch, Z.; Gavron, A.; Tal, A.; Itzkin, Y; Schlesinger, T. (1980): Development of a Polycarbonate Fast Neutron Dosimeter and Comparison with the Conventional Emulsion Dosimeter. Health Phys. 38, 497–505.

    Google Scholar 

  • Engelke, B.-A.; Oetzmann, W. (1967): Der Einfluß dünner luftäquivalenter Zwischenschichten auf die Druckabhängigkeit der mittleren Ionendosisleistung. Biophysik 4, 175–182.

    Google Scholar 

  • Engelke, B.-A.; Oetzmann, W.; Struppek, G. (1988): Die Meßeinrichtungen der Physikalisch-Technischen Bundesanstalt zur Darstellung der Einheiten der Standard-Ionendosis, Photonen-Äquivalentdosis und der Luftkerma, PTB-Bericht Dos-16. Bremerhaven: Wirtschaftsverlag.

    Google Scholar 

  • Fidorra, J.; Booz, J. (1981): Microdosimetric Investigations on Collimated Fast-Neutron Beams for Radiation Therapy. Part I, II Phys. Med. Biol. 26, 27–41, 43-56.

    Google Scholar 

  • Fleischer, R. L.; Price, P. B.; Walker, R. M. (1975): Nuclear Tracks in Solids, Principles and Applications. Berkeley, Los Angeles, London: Univ. of California Press.

    Google Scholar 

  • Galbraith, D.M.; Rawlinson, J. A.; Munro, P. (1984): Dose errors due to charge storage in electron irradiated plastic phantoms. Med. Phys. 11, 197–203.

    Google Scholar 

  • Gesetz über Medizinprodukte (1994): Medizinproduktegesetz (MPG) vom 2. August 1994, BGBl. I, S. 1963-1984.

    Google Scholar 

  • Geske, G. (1979): Ein verbessertes Verfahren zur Nachbildung von Wasser und biologischen Gewebe bezüglich linearer Wechselwirkungseffekte mit Photonen und schnellen Elektronen. Strahlentherapie 155, 407–415.

    Google Scholar 

  • Goodman, L. J. (1978): Density and Composition Uniformity of A-150 Tissue-Equivalent Plastic. Phys. Med. Biol. 23, 753–758.

    Google Scholar 

  • Greening, J. R. (1985): Fundamentals of Radiation Dosimetry. Bristol: Adam Hilger.

    Google Scholar 

  • Griffith, R.V.; Hankins, D.E.; Gammage, R. B.; Tommasino, L; Wheeler, R. V. (1979): Recent Developments in Personnel Neutron Dosimeters — a Review. Health Phys. 36, 235–260.

    Google Scholar 

  • Großwendt, B. (1984): Back scatter factors for X-rays generated at voltages between 10 kV and 100 kV. Phys. Med. Biol 29, 579–591.

    Google Scholar 

  • Großwendt, B.; Kramer, H. M. (1985): Rückstreufaktoren von Wasser im Bereich konventioneller Röntgenstrahlen. In: PTB-Jahresbericht 1984, 208. Braunschweig: Physik.-Techn. Bundesanstalt.

    Google Scholar 

  • Großwendt, B.; Roos, M. (1989a): Degradation hochenergetischer Elektronen in Wasser: Mittlere Elektronenenergien. In: Leetz, H.-K., Hrsg.: Medizinische Physik 89, 323-330. ISBN 3-925218-06-8.

    Google Scholar 

  • Grosswendt, B.; Roos, M. (1989b): Electron Beam Absorption in Solid and in Water Phantoms: Depth Scaling and Energy-range Relations. Phys. Med. Biol. 34(4), 509–518.

    Google Scholar 

  • Großwendt, B.; Roos, M. (1992): Das Strahlungsfeld im Wasserphantom. In: Hohlfeld u. Roos (Hrsg.): Dosismeßverfahren für Photonen-und Elektronenstrahlung, 95. PTB-Seminar, PTB-Dos 21, S. 24-45. Bremerhaven: Wirtschaftsverlag.

    Google Scholar 

  • Guldbakke, S.; Jahr, R.; Lesiecki, H.; Schölermann, H. (1980): Neutron Sensitivity of Geiger-Müller Photon Dosemeters for Neutron Energies between 100 keV and 19 MeV. Health Phys. 39, 963–969.

    Google Scholar 

  • Guldbakke, S.; Klein, H. (1981): Dead Time of Geiger-Müller Photon Dosemeters. Fourth Symp. on Neutron Dosimetry, Bd. II, S. 385–394. EUR 7448, Brüssel: Kommission der Europäischen Gemeinschaften.

    Google Scholar 

  • Harder, D.; Hariegel, G.; Schultze, K. (1961): Bahnspuren schneller Elektronen. Strahlentherapie 115, 1–21.

    Google Scholar 

  • Harder, D. (1965a): Energiespektren schneller Elektronen in verschiedenen Tiefen. In: Zuppinger, A.; Poretti, G. (Hrsg.): Symposium on High Energy Electrons, Montreux 1964, 26–33. Berlin: Springer.

    Google Scholar 

  • Harder, D. (1965b): Berechnung der Energiedosis aus Ionisationsmessungen bei Sekundärelektronen-Gleichgewicht. In: Zuppinger, A.; Poretti, D. Hrsg.: Symposium on High Energy Electrons, Montreux 1964, 40–48. Berlin: Springer.

    Google Scholar 

  • Harder, D. (1966): Physikalische Grundlagen der Dosimetric In: Sonderband zur Strahlentherapie Bd. 62, S. 254–279. München: Urban & Schwarzenberg.

    Google Scholar 

  • Harder, D. (1968): Einfluß der Vielfachstreuung von Elektronen auf die Ionisation in gasgefüllten Hohlräumen. Biophysik 5, 157–164.

    Google Scholar 

  • Harder, D.; Rubach, A. u.a. (1988): Wasser-und gewebeäquivalente Festkörperphantome für hochenergetische Photonen und Elektronen. In: Med. Physik 88, 325-330 (Nüßlin, F. Hrsg.) ISBN 3-925218-05-X.

    Google Scholar 

  • Harder, D.; Großwendt, B.; Roos, M.; Christ, G.; Bödi, R. (1989): Ermittlung des relativen Massenbremsvermögens für die Elektronenstrahlung klinischer Beschleuniger nach dem “Ersatz-Anfangsenergie-Verfahren”. In: Med. Physik 89, 311-316 (Leetz, H.-K. Hrsg.): ISBN 3-925218-06-8.

    Google Scholar 

  • Henry, W. H. (1974): Tissue-air ratio, peak scatter factor and consistency. Phys. Med. Biol. 19, 43–50.

    Google Scholar 

  • Henry, W. H. (1982): Tissue-air ratio and its associated ‘in air’ reference minimal phantom Phys. Med. Biol. 27, 153–154.

    Google Scholar 

  • Hermann, K.-P. u.a. (1985): Polyethylene-based water-equivalent phantom material for X-ray dosimetry at the voltages from 10 to 100 kV. Phys. Med. Biol. 30, 1195–1200.

    Google Scholar 

  • Hermann, K.-P. u.a. (1986): Muscle-and fat-equivalent polyethylene-based phantom material for X-ray dosimetry at tube voltages below 100 kV. Phys. Med. Biol. 31, 1041–1046.

    Google Scholar 

  • Hohlfeld, K.; Roos, M. (1986): Dosismeßverfahren für Ionisationskammern, die zur Anzeige der Wasser-Energiedosis kalibriert sind. In: Med. Physik 86 (Klinzing, L. v., Hrsg.): 255-63. ISBN 3-925218-03-3.

    Google Scholar 

  • Hohlfeld, K. (1993): Testing of the IAEA code: absorbed dose determination at Co-60 gamma radiation. In: IAEA Proc. (1993): 67-76.

    Google Scholar 

  • Hubbell, J. H. (1982): Photon Mass Attenuation and Energy Absorption Coefficients from 1 keV to 20 MeV. Int. J. Appl. Radiat. Isot. 33, 1269–1290.

    Google Scholar 

  • IAEA 96 (1965): Webster, E.; Tsien, K. C: Atlas of Radiation Dose Distribution. Vol. I. Single Field Isodose Charts. Technical Directory Series STI/PUB/96. Wien: IAEA.

    Google Scholar 

  • IAEA 205 (1981): High Dose Measurement in Industrial Radiation Processing. Technical Report Series No 205. Wien: IAEA.

    Google Scholar 

  • IAEA 277 (1987): Absorbed Dose Determination in Photon and Electron Beams; An International Code of Practice. Technical Report Series No 277. Wien: IAEA.

    Google Scholar 

  • IAEA Proc. (1993): Review of Data and Methods Recommended in the International Code of Practice: IAEA Techn. Rep. Series No. 277, Absorbed Dose Determination in Photon and Electron Beams. Proc. of a Consultant Meeting. Wien: IAEA.

    Google Scholar 

  • ICRP 26 (1977): Recommendations of the International Commission on Radiological Protection. ICRP Publication 26. Oxford: Pergamon (deutsch (1978). Stuttgart: G. Fischer).

    Google Scholar 

  • ICRP 60 (1991): 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Oxford: Pergamon (deutsch (1993). Stuttgart: G. Fischer).

    Google Scholar 

  • ICRU Reports. International Commission on Radiation Units and Measurements. Bethesda, Md.: ICRU Publications.

    Google Scholar 

  • ICRU 19 (1971): Radiation Quantities and Units.

    Google Scholar 

  • ICRU 24 (1976): Determination of Absorbed Dose in a Patient Irradiated by Beams of X or Gamma Rays in Radiotherapy Procedures.

    Google Scholar 

  • ICRU 26 (1977): Neutron Dosimetry for Biology and Medicine.

    Google Scholar 

  • ICRU 29 (1978): Dose Specification for Reporting External Beam Therapy with Photons and Electrons.

    Google Scholar 

  • ICRU 30 (1979): Quantitative Concepts and Dosimetry in Radiobiology.

    Google Scholar 

  • ICRU 33 (1980): Radiation Quantities and Units.

    Google Scholar 

  • ICRU 34 (1982): The Dosimetry of Pulsed Radiation.

    Google Scholar 

  • ICRU 35 (1984): Radiation Dosimetry: Electron Beams with Energies Between 1 and 50 MeV.

    Google Scholar 

  • ICRU 36 (1983): Microdosimetry.

    Google Scholar 

  • ICRU 37 (1984): Stopping Powers for Electrons and Positrons.

    Google Scholar 

  • ICRU 39 (1985): Determination of Dose Equivalents Resulting from External Radiation Sources.

    Google Scholar 

  • ICRU 40 (1986): The Quality Factor in Radiation Protection.

    Google Scholar 

  • ICRU 42 (1987): Use of Computers in External Beam Radiotherapy Procedures with High-Energy Photons and Electrons.

    Google Scholar 

  • ICRU 43 (1988) Determination of Dose Equivalents from External Radiation Sources — Part 2.

    Google Scholar 

  • ICRU 44 (1989): Tissue Substitutes in Radiation Dosimetry and Measurement.

    Google Scholar 

  • ICRU 47 (1992): Measurement of Dose Equivalents from External Photon and Electron Radiations.

    Google Scholar 

  • ICRU 51 (1993): Quantities and Units in Radiation Protection Dosimetry.

    Google Scholar 

  • IEC 731 (1996): Medical electrical equipment: dosemeters with ionization chambers as used in radiotherapy. Draft International Standard. Genf: IEC.

    Google Scholar 

  • Inf. Sem. (1987): Fifth Information Seminar on the Radiation Protection Dosemeter Intercomparison.

    Google Scholar 

  • Program, Bologna. CEC Report EUR 11363. Luxemburg: Kommission der Europäischen Gemeinschaft.

    Google Scholar 

  • Ing, H.; Birnboim, H. C. (1984): A Bubble-damage Detector for Neutrons. Nucl. Tracks Radiat. Meas. 8, 285–288.

    Google Scholar 

  • ISO Publication (1993): Guide to the Expression of Uncertainty in Measurement. Paris: ISO, AFNOR.

    Google Scholar 

  • ISO 4037 (1996): X and y reference radiations for calibrating dosemeters and dose rate meters and for determining their response as a function of photon energy. Part 1: Characteristics of the radiation and their methods of production. Part 2: Dosimetry of X and Gamma reference radiations for radiation protection over the energy range from 8 ke V to 1, 3 MeV and from 4 MeV to 9 MeV. Part 3: Calibration of area and personal dosemeters and the determination of their response as a function of photon energy and angle of incidence. Paris: ISO, AFNOR.

    Google Scholar 

  • ISO 8963 (1988): Dosimetry of X and γ reference radiations for radiation protection over the energy range from 8 keV to 1.3 MeV. Paris: ISO, AFNOR.

    Google Scholar 

  • Jaeger, R. G.; Hübner, W. (Hrsg.) (1974): Dosimetric und Strahlenschutz. Stuttgart: Thieme.

    Google Scholar 

  • Johansson, K.A.; Mattsson, L. O.; Lindborg, L.; Svensson, H. (1978): Absorbed-dose determination with ionization chambers in electron and photon beams having energies between 1 and 50 MeV. In: IAEA 471, Vol. II, 243–270. Wien: IAEA.

    Google Scholar 

  • Johansson, K. A.; Mattsson, L. O.; Svensson, H. (1982): Dosimetric intercomparison at the Scandinavian radiation therapy centres. Part I: Absorbed dose intercomparison. Acta Radiol. Oncol. 21, 1–10.

    Google Scholar 

  • Johns, H. E.; Cunningham, J. R. (1983): The Physics of Radiology, 4. Aufl. Springfield, I11.: Charles C. Thomas.

    Google Scholar 

  • Kase, K. R.; Bjärngard, B. E.; Attix, F. H. (Hrsg.) (1985, 1987): The Dosimetry of Ionizing Radiation. Vol. 1 (1985), Vol. 2 (1987). London: Academic Press.

    Google Scholar 

  • Kellerer, A.M. (1985): Fundamentals of Microdosimetry. In: Kase, K. R.; Bjärngard, B.E.; Attix, F. H. (Hrsg.) (1985): The Dosimetry of Ionizing Radiation, Vol. I, 77–162. Orlando: Academic Press.

    Google Scholar 

  • Kemmochi, M. (1978): A Rem Ratemeter for Mixed Radiation Using to Spherical Ionization Chambers. Health Phys. 35, 333–340.

    Google Scholar 

  • Klevenhagen, S. C. (1991): Implication of electron backscattering for electron dosimetry. Phys. Med. Biol. 36, 1013–1018.

    Google Scholar 

  • Kolb, W.; Lauterbach, U. (1974): Das Szintillationsdosimeter PTB 7201 in verbesserter Ausführung, In: Strahlenschutz und Umweltschutz (Jahrestagung 1974 des Fachverbandes für Strahlenschutz e.V.), Bd. II, 662–690: Eggenstein-Leopoldshafen: Zentralstelle für Atomkernenergie Dokumentation.

    Google Scholar 

  • Kramer, H. M.; Großwendt, B.; Hohlfeld, K.(1985): Experimental determination of the back scatter factor for soft X-rays in water and acryl glass. Nucl. Instr. Meth. B9, 10–19.

    Google Scholar 

  • Kramer, H.M. (1994): On the Use of Conversion Coefficients from Air Kerma to the ICRU Quantities for Low-Energy X-ray Spectra, Radiat. Prot. Dosim. 54, 213–215.

    Google Scholar 

  • Kurtzke, K.-D. (1977): Raum-und Mammadosis bei der Mammographie (Experimentelle Untersuchungen). Dissertation Univ. Göttingen.

    Google Scholar 

  • Leake, J. W. (1966): A Spherical Dose Equivalent Neutron Detector. Nucl. Instr. Meth. 45, 151–156.

    Google Scholar 

  • Loevinger, R.; Trott, N. G. (1966): Design and operation of an extrapolation chamber with removable electrodes. Int. J. Appl. Rad. Isot. 17, 103–111.

    Google Scholar 

  • Lowry, S. (1974): Fundamentals of Radiation Therapy. London: The English Universities Press.

    Google Scholar 

  • Luszik-Bhadra, M.; Alberts, W. G.; Dietz, E.; Guldbakke, S.; Kluge, H. (1992): A Simple Personal Dosemeter for Thermal, Intermediate and Fast Neutrons Based on CR-39 Etched Track Detectors. Radiat. Prot. Dosim. 44, 313–316.

    Google Scholar 

  • Luszik-Bhadra, M.; Alberts, W. G.; Dietz, E.; Guldbakke, S. (1993): Aspects of Combining Albedo and Etched Track Techniques for Use in Individual Neutron Monitoring. Radiat. Prot. Dosim. 46, 31–36.

    Google Scholar 

  • Markus, B. (1960): Dosisverteilungen schneller Elektronen zwischen 3 und 15 MeV und ihre Beeinflussung durch Herdblenden und Tubusse. Strahlentherapie 112, 322–330.

    Google Scholar 

  • Markus, B. (1973): Ionization chambers, free of polarity effects, intended for electron dosimetry. Proc. Symp. Vienna, IAEA, STI/PUB/311, 463–473. Wien: IAEA.

    Google Scholar 

  • Markus, B. (1975): Eine polarisierungseffekt-freie Graphit-Doppelextrapolationskammer zur Absolutdosimetrie schneller Elektronen. Strahlentherapie 150, 307–320.

    Google Scholar 

  • Markus, B.; Kasten, G. (1983): Zum Konzept des mittleren Bremsvermögens und der mittleren Elektronenenergie in der Elektronendosimetrie. Strahlentherapie 159, 567–571.

    Google Scholar 

  • Mattsson, L. O.; Johansson, K. A.; Svensson, H. (1981): Calibration and use of plane parallel ionization chambers for the determination of absorbed dose in electron beams. Acta Radiol. Oncol. 20, 385–399.

    Google Scholar 

  • Mattsson, L. O.; Svensson, H. (1984): Charge build up effects in insolating phantom materials. Acta Radiol. Oncol. 23, 393–399.

    Google Scholar 

  • Menzel, H. G.; Paretzke, H.-G.; Booz, J. (Hrsg.) (1989): Implementation of Dose-equivalent Meters Based on Microdosimetric Techniques in Radiation Protection. Radiat. Prot. Dosim. 29, Nos. 1-2.

    Google Scholar 

  • Morris, W. T.; Owen, B. (1975): An ionization chamber for therapy-level dosimetry of electron beams. Phys. Med. Biol. 20, 718–727.

    Google Scholar 

  • Müller-Sievers, K.; Riehl, G. (1982): Erste Erfahrungen mit dem Elektronen-Linearbeschleuniger Therac-20-Saturn im klinischen Betrieb. Strahlentherapie 158, 356–361.

    Google Scholar 

  • Nachtigall, D.; Burger, G. (1972): Dose Equivalent Determinations in Neutron Fields by Means of Moderator Techniques. In: Attix, F. H. u.a., Hrsg.: Topics in Radiation Dosimetry, 385–451. New York, London: Academic Press.

    Google Scholar 

  • NACP (1980): Procedures in External Radiation Therapy Dosimetry with Electron and Photon Beams with Maximum Energies between 1 and 50 MeV. Recommendations of the Nordic Association of Clinical Physics. Acta Radiol. Oncol. 19, 55–79.

    Google Scholar 

  • NACP (1981): Electron beams with mean energies at the phantom surface below 15 MeV. (Supplement to NACP (1980)). Acta. Radiol. Oncol. 20, 40–415.

    Google Scholar 

  • NCRP 50 (1976): Environmental Radiation Measurements. NCRP Report No. 50. Washington, D.C.: National Council on Radiation Protection and Measurements.

    Google Scholar 

  • Nilsson, B.; Brahme, A(1983): Relation between Kerma and Absorbed Dose in Phantom Beams. Acta Radiol. Oncol. 22, 77–85.

    Google Scholar 

  • Nilsson, B.; Montelius, A. (1986): Fluence perturbation under nonequilibrium conditions. Acta Radiol. Oncol. 22, 191–195.

    Google Scholar 

  • Piesch, E.; Burgkhardt, B. (1988): Albedo Dosimetry System for Routine Personnel Monitoring. Radiat. Prot. Dosim. 23, 117–120.

    Google Scholar 

  • PTB-Anforderungen 15.10 (1990): In: Medizinische Meßgeräte. Braunschweig: Deutscher Eichverlag.

    Google Scholar 

  • PTB-Anforderungen 23 (1990–1996): Strahlenschutzmeßgeräte. Braunschweig: Deutscher Eichverlag.

    Google Scholar 

  • PTB-Prüfregeln (1984): Bd. 16. Therapiedosimeter mit Ionisationskammern für Photonenstrahlung mit Energien unterhalb von MeV. Braunschweig: Phys.-Techn. Bundesanstalt.

    Google Scholar 

  • Quam, W; DeLuca, T.; Plake, W.; Graves, G.; De Vore, T.; Warren, J. (1982): Pocket Neutron Rem Meter. In: Proceedings Ninth DOE Workshop on Personnel Neutron Dosimetry, 1075-1086. PNL-SA-10714. Richland, WA: Batelle.

    Google Scholar 

  • Raju, M. R. (1980): Heavy Particle Radiotherapy. New York: Academic Press.

    Google Scholar 

  • Rassow, J. (1971): Beitrag zur Filmdosimetrie ionisierender Strahlung. III. Strahlentherapie 141, 47–55.

    Google Scholar 

  • RBE Committee (1963): Report of the RBE Committee. Health Phys. 9, 357–384.

    Google Scholar 

  • Reich, H. (1980): Neue Meßgröße für Strahlenschutzdosimeter für Photonenstrahlung. PTB-Mitt. 90, 290–292.

    Google Scholar 

  • Reich, H. (Hrsg.) (1990): Dosimetric ionisierender Strahlung. Stuttgart: Teubner.

    Google Scholar 

  • Roesch, W. C. (1958): Dose for nonelectronic equilibrium conditions. Rad. Res. 9, 399–410.

    Google Scholar 

  • Roesch, W. C; Attix, F. H. (1968): Basic Concepts of Dosimetry. In: Attix u.a. (Hrsg.): Bd. I, 1-41.

    Google Scholar 

  • Roos, M.; Derikum, K.; Lange, B. (1993): Eine neue Flachkammerkonstruktion für die Elektronendosimetrie. In: Müller, R.G. und Erb, J. (Hrsg.): Med. Physik 93, 364-365. ISBN 3-925218-10-6.

    Google Scholar 

  • Rossi, H.H. (1968): Microscopic energy distribution in irradiated matter. In: Attix, F. H. u.a. (Hrsg.): Radiation Dosimetry Vol. I. 43–92. London: Academic Press.

    Google Scholar 

  • Schlegel-Bickmann, D.; Brede, H.J.; Guldbakke, S.; Lewi, V. E.; Zoetelief, J. (1990): Measurement of ku-Values of Argon-filled Magnesium Ionisation Chambers. Phys. Med. Biol. 35, 717–730.

    Google Scholar 

  • Schneider, U; Groß wendt, B. (1983): Bestimmung der Wasser-Energiedosis bei weicher Röntgenstrahlung. In: PTB-Jahresberich 1983, 192–194. Braunschweig: Phys.-Techn. Bundesanstalt.

    Google Scholar 

  • Schötzig, U.; Schrader, H. (1993) Halbwertszeiten und Photonen-Emmissionswahrscheinlichkeiten von häufig verwendeten Radionukliden. PTB-Berich Ra-16/4, Bremerhaven: Wirtschaftsverlag.

    Google Scholar 

  • Schwartz, R. B.; Endres, G.W. R.; Cummings, F. M. (1982): Neutron Dosimeter Performance and Associated Calibrations at Nuclear Power Plants. NUREG/CR-2233, Washington, D.C.: U.S. Nuclear Regulatory Commission.

    Google Scholar 

  • Seelentag, W. W. u.a. (1979): A catalogue of spectra used for calibration of dosemeters. GSF-Bericht S 560. Neuherberg: GSF.

    Google Scholar 

  • Seiler, E. (Hrsg.) (1983): Grundbegriffe des Meß-und Eichwesens. Braunschweig: Vieweg.

    Google Scholar 

  • Seyfried, P.; Ebeling, G. (1988): Das Szintillationsdosimeter: Meßtechnische Eigenschaften des Meßkopfes. PTB-Bericht PTB-EW-5. Bremerhaven: Wirtschaftsverlag.

    Google Scholar 

  • Spiers, F. W.; Gibson, J. A. B.; Thompson, I. M. G. (1981): A Guide to the Measurement of Environmental Gamma-Ray Dose Rate. Teddington: National Physical Laboratory.

    Google Scholar 

  • StrlSchV (1989): Verordnung über den Schutz vor Schäden durch ionisierende Strahlen (Strahlenschutzverordnung — StrlSchV). Bundesgesetzblatt, Teil I, Nr. 34, 1321–1376.

    Google Scholar 

  • Svensson, H.; Brahme, A. (1986): Recent advances in electron and photon dosimetry. In: Colin, G.; Orton (Hrsg.): Radiation Dosimetry, Physical and Biological Aspects. New York: Plenum Press.

    Google Scholar 

  • Tabata, T.; Ito, R. (1992): Simple calculation of the electron-backscatter factor. Med. Phys. 19, 1423–1426.

    Google Scholar 

  • Thorngate, J. H.; Johnson, D. R. (1965): The Response of a Neutron-Intensive Gamma-Ray Dosimeter as a Function of Photon Energy. Health Phys. 11, 133–136.

    Google Scholar 

  • Twaites, D.I. (1984): Charge storage effect on dose in insulating phantoms irradiated with electrons. Phys. Med. Biol. 29, 1153–1156.

    Google Scholar 

  • Tschurlovits, M.; Leitner, A.; Daverda, G. (1992): Dose rate constants for new dose quantities. Radiat. Prot. Dosim. 42, 77–89.

    Google Scholar 

  • Udale, M. (1988): A Monte Carlo investigation of surface doses for broad electron beams. Phys. Med. Biol. 33, 939–954.

    Google Scholar 

  • Wachsmann, F.; Drexler, G. (1976): Kurven und Tabellen für die Radiologie. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • White, D. R. (1978): Tissue substitutes in experimental radiation physics. Med. Phys. 5, 467–479.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 B. G. Teubner, Stuttgart

About this chapter

Cite this chapter

Dietze, G. (1996). Ionisierende Strahlung und Radioaktivität. In: Kose, V., et al. Praktische Physik. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-87207-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-87207-4_3

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-87208-1

  • Online ISBN: 978-3-322-87207-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics