Skip to main content

Magnetismus

  • Chapter
  • 548 Accesses

Zusammenfassung

Die in Kapitel 5 benutzten Größen sind mit den zugehörigen SI-Einheiten in Tab. T 1.01 und Tab. T 1.06a in Band 3 aufgeführt oder werden in speziellen Fällen erklärt1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu 5.2

  • Abragam, A. (1961): The Principles of Nuclear Magnetism. Oxford: Oxford University Press.

    Google Scholar 

  • Acuna, M. H.; Pellerin, C.J. (1969): A miniature two-axis fluxgate magnetometer. IEEE Trans. Geosci. Electr. GE-7, 252–260.

    Article  Google Scholar 

  • Adrianow, B.A.; Grinko, I.E.; Lukosnin, A. F.; Orcharenko, P.S. (1976): High-Sensivity Cesium Magnetometer. Meas. Tech. 19, 1519–1522.

    Article  Google Scholar 

  • Ahlers, H.; Sievert, J. D. (1991): Polarisation, Kap. 2.3.3.2. In: Bortfeld u. Kramer (Hrsg.): Landolt/ Börnstein, Neue Serie) Band: Einheiten und Fundamentalkonstanten. Teilband a: Einheiten in Physik und Chemie. Berlin.

    Google Scholar 

  • Alers, P. B. (1962) High-Field Optical Magnetometer. Rev. Sci. Instrum. 33, 74–75.

    Article  Google Scholar 

  • Andrew, E. R. (1955): Nuclear Magnetic Resonance. Cambridge: University Press.

    Google Scholar 

  • Askenazy, S.; Marquez, J.; Ricart, D. (1989): Non-destructive quasi-static pulsed magnetic fields at Toulouse. In: Physica B 155, 55–57.

    Google Scholar 

  • Baltes, H. P.; Popvic, R. S. (1986): Integrated Semiconductor Magnetic Field Sensors. Proc. IEEE 74, 1107–1132.

    Article  Google Scholar 

  • Baran, W. (1964) u. (1965): Fangmagnetsysteme aus periodisch angeordneten Bariumferrit-Dauermagneten ohne Eisenpolschuhe; Magnetfelder, Anziehungskräfte und Konstruktionsvorschriften. Techn. Mitt. Krupp, Forsch.-Ber. 22, 101–124.

    Google Scholar 

  • Baran, W. (1964) u. (1965): Fangmagnetsysteme aus periodisch angeordneten Bariumferrit-Dauermagneten ohne Eisenpolschuhe; Magnetfelder, Anziehungskräfte und Konstruktionsvorschriften. Techn. Mitt. Krupp, Forsch.-Ber. 23, 1–13.

    Google Scholar 

  • Baran, W. (1970): Die Erzeugung hoher Magnetfelder mit Dauermagnetsystemen. Techn. Mitt. Krupp, Forsch.-Ber. 28, 127–129.

    Google Scholar 

  • Baran, W.; Locher, P. R.; Süße, W.; Zijlstra, H. (1989): Permanent System for Magnetic Resonance Imaging. In: Mitchell, I.V.; Coey, J.M.; Givord, D.; Harris, I.R.; Hanitsch, R. (Hrsg.): Concerted European Action on Magnets (CEAM). London: Elsevier.

    Google Scholar 

  • Bartington Bulletin (1989): Oxford, U.K.

    Google Scholar 

  • Baum, E.; Bork, J. (1991): Systematic Design of Magnetic Shields. J. Magn. Magn. Mat. 101, 69–74.

    Article  Google Scholar 

  • Bell, E. W. (1991): Modfell Serie 9900, USA.

    Google Scholar 

  • Berger, W.; Butterweck, H.-J. (1956): Die Berechnung von Spulen zur Erzeugung homogener Magnetfelder und konstanter Feldgradienten. Arch. Elektrot. 42, 216–222.

    Article  Google Scholar 

  • Best, K. J.; Bork, J. (1989): Abschirmkabinen in medizinischer Diagniose und Halbleitertechnologie. ETZ 110, 814–819.

    Google Scholar 

  • Bitter, F. (1939): The Design of Powerful Electromagnets Part IV. The New Laboratory at MIT. Rev. Sci. Instrum. 10, 373–381.

    Article  Google Scholar 

  • Bitter, F. (1939): The Design of Powerful Electromagnets Part IV. The New Laboratory at MIT. Rev. Sci. Instrum. III: 8, 318–319.

    Article  Google Scholar 

  • Bitter, F. (1939): The Design of Powerful Electromagnets Part IV. The New Laboratory at MIT. Rev. Sci. Instrum. II: 7, 482–488.

    Article  Google Scholar 

  • Bitter, F. (1939): The Design of Powerful Electromagnets Part IV. The New Laboratory at MIT. Rev. Sci. Instrum. I: 7, 479–481.

    Article  Google Scholar 

  • Bock, R. (1929): Über die Homogenität des magnetischen Feldes in der Helmholtz-Gaugainschen Doppelkreisanordnung. Zeitschr. Phys. 54, 257–259.

    Article  Google Scholar 

  • Bornhöfft, W.; Trenkler, G. (1990): Magnetic Field Sensors: Flux gate Sensors. In: Sensors vol. 5, Göpel, W. (Ed.). Weinheim: VHC, 152–203.

    Google Scholar 

  • Braun, E. (1977): High Magnetic Fields. J. Magn. Magn. Mat. 6, 3–6.

    Article  Google Scholar 

  • Braunbek, W. (1934): Die Erzeugung weitgehend homogener Magnetfelder durch Kreisströme. Zeitschr. Phys. 88, 399–402.

    Article  Google Scholar 

  • Brechna, H. (1973): Superconducting Magnet Systems. Berlin, Heidelberg, New York: Springer; München: Bergmann.

    Book  Google Scholar 

  • Buchholtz, F.; Koo, K.P.; Kersey, A.D.; Danbridge, A. (1986): Fiber Optic Magnetic Sensor Development. Proc. SPIE 718, 56–65.

    Google Scholar 

  • Buchholtz, F.; Dagenais, D.M.; Koo, K.P.; Vohra, S. (1990): Recent developments in fiber optic magnetostrictive sensors. Proc. SPIE 1367, 226–234.

    Article  Google Scholar 

  • Burson, S.B.; Martin, D.W.; Schmid, L. (1959): Dynamic-Condenser Magnetic Fluxmeter. Rev. Sci. Instrum. 30, 513–521.

    Article  Google Scholar 

  • B.T.I Test Report (1986): San Diego, USA.

    Google Scholar 

  • Capptuller, H. (1961): Ein Differenzverfahren zur absoluten Bestimmung der Kraftflußdichte im Luftspalt von Laboratoriumsmagneten. Z. Instrkde. 69, 133–140.

    Google Scholar 

  • Capptuller, H. (1964): Bestimmung von Windungsflächen mit Digital-Fluxmetern. PTB-Mitt. 74, 8–9.

    Google Scholar 

  • Chien, C. L. (Ed.) (1980): The Hall Effect and its Application. New York: Plenum Press.

    Google Scholar 

  • Chikazumi, S.; Miura, N. (ed.) (1981): Physics in High Magnetic Fields, Proceedings of the Oji International Seminar Hakone, Japan, 10.–13. Sept. 1980. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Clark, J. (1980): Advances in SQUID magnetometers. IEEE Trans. El Dev. Ed-27, 1896–1908.

    Article  Google Scholar 

  • Cnare, E. C. (1966): Magnetic Flux Compression by Magnetically Imploded Metallic Foils. J. Appl. Phys. 37, 3812–3816.

    Article  Google Scholar 

  • Combinova Data Sheet MFM 10, MFM 100 (1989): Bromma, Schweden.

    Google Scholar 

  • Crow, I.E.; Sullivan, N. S.; Parkin, D. M. (1992): The US National High Magnetic Field Laboratory: status and overview. Physica B177, 16–21.

    Google Scholar 

  • Daganais, D. M.; Buchholtz, F; Koo, K. P.; Danbridge, A. (1988): Source and Reduction of Inhomogenous Magnetic Response and Low Frequency Sideband Noise in a Fiber Optic Magnetic Sensor. Proc. SPIE 985, 159–162.

    Google Scholar 

  • Day, G. W.; Rose, A. H. (1988): Faraday Effect Sensors: The State of the Art. Proc. SPIE 985, 138–150.

    Google Scholar 

  • de Boer, F. R.; de Chatel, P. F.; Franse, J. J. M. (Eds.) (1992): Proceedings of the 3rd International Symposium on Research on High Magnetic Fields, Amsterdam, 29-31 August, 1991 in: Physica B177.

    Google Scholar 

  • De Mott, E. G. (1970): Integrating Fluxmeter with Digital Readout. IEEE Trans. Magn. MAG-6, 289–291.

    Google Scholar 

  • Dibbern, U. (1986): Magnetic Field Sensors Using The Magnetoresistive Effect. Sens. Actuat. 10, 127–140.

    Article  Google Scholar 

  • Drung, D. (1991): DC SQUID systems overview. Supercond. Sci. Technol. 4, 377–385.

    Article  Google Scholar 

  • Dubbers, D. (1986): Simple Formula for Multiple Mu-Metal Shields. Nucl. Instr. and Meth. A243, 511–517.

    Google Scholar 

  • Dunn, C. G.; Clark, G. L. (1937): Magnetic Field of a Symmetrtical Bundle of Parallel Wires Carrying Equal Currents. Phys. Rev. 52, 1167–1169.

    Article  Google Scholar 

  • Dzieyk, B. (1971) Angewandte Magnettechnik. Heidelberg: Hlithig.

    Google Scholar 

  • Eder, F. X. (1972): Moderne Meßmethoden der Physik. Berlin: VEB Deutscher Verlag der Wissenschaften.

    Google Scholar 

  • Fagaly, R. L. (1987): Superconducting magnetometers and instrumentation. Sci. Prog. (Oxford) 71, 181–201.

    Google Scholar 

  • Fahlenbrach, H.; Baran, W. (1965): Dauermagnete und ihre Anwendung in Betrieben. München: Hanser.

    Google Scholar 

  • Fanselau, G. (Ed.) (1960): Geomagnetismus und Aeronomie. Bd. 2: Geomagnetische Instrumente und Meßmethoden, Berlin: Deutscher Verlag der Wissenschaften.

    Google Scholar 

  • Farr, W.; Otten, E. W. (1974): A Rb-Magnetometer for a Wide Range and High Sensitivity. J. Appl. Phys. 3, 367–378.

    Article  Google Scholar 

  • Farthing, W. H.; Folz, W. C. (1967): Rubidium Vapor Magnetometer for Near Earth Orbiting Spacecraft. Rev. Sci. Instrum. 38, 1023–1030.

    Article  Google Scholar 

  • Fedotov, S. I.; Zalkind, V.M. (1987): Magnetic Diode For Measurement Of Magnetic-Field Strength. Instrum. Exp. Techn. 30, 928–930.

    Google Scholar 

  • Fischer, J. (1949): Abriß der Dauermagnetkunde. Berlin: Springer.

    Google Scholar 

  • FIT. Spot Beam 4 (1991): Bad Salzfurth, BRD.

    Google Scholar 

  • Foner, S.; Fisher, W. G. (1967): Solid Helix Magnets for Large Volume Pulsed High Fields. Rev. Sci. Instrum. 38, 440–442.

    Article  Google Scholar 

  • Foner, S. (1981): Review of Magnetometry. IEEE Trans. Magn. MAG-17, 3358–3363.

    Article  Google Scholar 

  • Foner, S. (1989): Experiments with strong pulsed magnetic fields produced by Cu/Nb microcomposite wirewound magnet. In: Physica B155, 18–22.

    Google Scholar 

  • Fowler, C. M. (1973) Megagauss Physics. Science 180, 261–267.

    Article  Google Scholar 

  • Fowler, C. M.; Caird, R. S.; Erickson, D. J.; Freeman, L.; Garn, W. B. (1981): Explosive Generation of High Magnetic Fields in Large Volumes and Solid State Applications. In: Chikazumi u. Miura (1981), 54-63.

    Google Scholar 

  • Frey, H.; Haefer, R. A. (1981): Tiefentemperaturtechnologie. Düsseldorf: VDI-Verlag.

    Google Scholar 

  • Gallop, J. (1991): SQUIDs, the Josephson effects and measurement. Meas. Sci. Technol. 2, 485–496.

    Article  Google Scholar 

  • Garrett, M. W. (1951): Axially Symmetric System for Generating and Measuring Magnetic Fields. Part I. J. Appl. Phys. 22, 1091–1107.

    Article  Google Scholar 

  • Gast, T. (1989): Meßtechnisch angewandte Magnetsysteme. In: Gast, T. (Hrsg.): Magnetik in der Meßtechnik. Düsseldorf: VDI/VDE-GMA.

    Google Scholar 

  • Geary, P. J. (1964): Magnetic and Electric Suspensions. A survey of their Design, Construction and Use. London: Taylor & Francis.

    Google Scholar 

  • Gersdorf, R.; Roeland, L. W.; Mattens, W. C. M. (1989): Design of Magnet Coils for Semi-Continuous Magnetic Fields up to 60 T. In: Physica B 155, 10–17.

    Article  Google Scholar 

  • Geyger, W. A. (1962): The Ring-Core Magnetometer. AIEE Trans. 81, 65–73.

    Google Scholar 

  • Gey, W.; Simontowski, H. (1989): The High Field Magnet Laboratory (HMFA) at Braunschweig University. In: Physica B 155, 104–105.

    Article  Google Scholar 

  • Hadfield, D. (1962): Permanent Magnets and Magnetism. Theory, Materials, Design, Manufacture and Applications. London: Iliffe.

    Google Scholar 

  • Hahn, H. (1972): Halbleiter-Meßfühler in Theorie und Praxis. Bad Wörrishofen: Geyer Verlag.

    Google Scholar 

  • Hak, J. (1936): Eisenlose Zylinderspulen mit ungleichmäßiger Windungsdichte zur Erzeugung von homogenen Feldern. Arch. Elektrot. 30, 736–745.

    Article  Google Scholar 

  • Halbach, K. (1981): Physical and Optical Properties of Rare Earth-Cobalt Magnets. Nuclear Instruments and Methods 187, 109–117.

    Article  Google Scholar 

  • Halbach, K. (1985): Permanent Magnets for Production and Use of High Energy Particle Beams. In: Strnat, K. J. (Hrsg.): Proceedings of the Eighth International Workshop on Rare-Earth Magnets and their Applications. Dayton: University.

    Google Scholar 

  • Hara, T.; Miuhara, M.; Toyoda, N.; Zama, M. (1982): Highly Linear GaAs Hall Devices Fabricated by Ion Implantation. IEEE Trans. El. Dev. ED-29, 78–82.

    Article  Google Scholar 

  • Harvey, J. K. (1981) Linearity Measurement of a SQUID System. J. Phys. E: Sci. Instrum. 14, 683–686.

    Article  Google Scholar 

  • Heck, C. (1975): Magnetische Werkstoffe und ihre technische Anwendung. 2. Aufl. Heidelberg: Hüthig Heimke, G. (1976): Keramische Magnete. Wien: Springer.

    Google Scholar 

  • Heinrich, H. (1968): Die physikalischen Grundlagen des Protonenmagnetometers. Askania-Warte 72, 4–8.

    Google Scholar 

  • Hennig, G. (1952): Dauermagnettechnik, München: Franzis.

    Google Scholar 

  • Herlach, F.; Perenboom, J. A. A. J. (1995): Magnet Laboratory facilities worldwide — an update. In: Physica B211, 1–16.

    Google Scholar 

  • Herlach, F.; Franse, J. J.M. (Eds.) (1989): Proceedings of the 2nd International Symposium on High Field Magnetism (including a Review of High-Field Facilities Worldwide), Leuven, 1988. In: Physica B 155.

    Google Scholar 

  • Herlach, F.; van Bockstal, L.; van der Bürgt, M.; Heremans, G. (1989): The pulsed field installation at the KL. U. Leuven. In: Physica B 155, 61–64.

    Article  Google Scholar 

  • Hetrick, R. E. (1989): A Vibrating Cantilever Magnetic Field Sensor. Sens. Actuators 16, 197–207.

    Article  Google Scholar 

  • Hine, A. (1968): Magnetic Compasses and Magnetometers. Toronto: Univ. Toronto Press.

    Google Scholar 

  • Hoult, D. I. (1979): Fast recovery, high sensitivity NMR probe and preamplifier for low frequencies. Rev. Sci. Instrum. 50, 193–200.

    Article  Google Scholar 

  • Inoue, K.; Takeuchi, T.; Kiyoshi, T.; Itoh, K.; Wada, H.; Maeda, H.; Fujioka, T.; Murase, S.; Wachi, Y.; Hanai, S.; Sasaki, T. (1992): Development of a 40 Tesla Class Hybrid Magnet System. In: IEEE Trans. Magn. MAG-28, 493–496.

    Article  Google Scholar 

  • Ireland, J. R. (1968): Ceramic Permanent-Magnet Motors. Electrical and Magnetic Design and Application. New York: McGraw-Hill.

    Google Scholar 

  • Jacobi, H. D.; Radelt, H. (1968): Askania-Warte 72, 9.

    Google Scholar 

  • Jahn, L. (1979): Mögliche Anwendungen des Vibrationsproben-Magnetometers. Hermsdorf. Tech. Mitt. 19, 1715–1722.

    Google Scholar 

  • Jones, H. (1989): The high field facility at the Clarendon Laboratory, Oxford. In: Physica B155, 65–68.

    Google Scholar 

  • Jongbloets, H. W. H. M.; Schneider-Munthau, H.-J.; Picoche, J. C; Rub, P.; Vallier, J. C. (1989): The High Field Magnet Laboratory of Grenoble. In: Physica B 155, 81–84.

    Article  Google Scholar 

  • Jung, P.; Oth, J. F. (1971): An Automatic Self-Locking NMR Gaussmeter. J. Sci. Instrum. 4, 127–130.

    Article  Google Scholar 

  • Kaden, H. (1959): Wirbelströme und Schirmung in der Nachrichtentechnik. 2. Aufl. Berlin/Göttingen/ Heidelberg/München: Springer/Bergmann.

    Google Scholar 

  • Kersey, A. D.; Corke, M.; Jackson, D. A.; James, J. D. C. (1983): Detection of DC and Low Frequency AC Magnetic Fields Using All Single-Mode Fibre Magnetometer. Electron. Lett. 19, 469–471.

    Article  Google Scholar 

  • Kertz, W. (1969): Einführung in die Geophysik. Bd. 1, Erdkörper. Manneim: Bibl. Inst.

    Google Scholar 

  • Ketchen, M. B. (1987): Integrated Thin-Film dc SQUID Sensors. IEEE Trans. Magn. MAG-23, 1650–1657.

    Article  Google Scholar 

  • Keur, M.; Leilabady, P.A. (1987): Single mode fiber optic magnetometer capable of multiplepoint measurement. Proc. SPIE 838, 10–16.

    Google Scholar 

  • Kibble, B.P.; Hunt, G.J. (1971): Results obtained with a prototype apparatus for determining the gyromagnetic ratio of the proton in a high magnetic field. Nat. Phys. Lab. Divisional Report QU 15.

    Google Scholar 

  • Kibble, B.P.; Hunt, G.J. (1979) A Measurement of the Gyromagnetic Ratio of the Proton in a Strong Magnetic Field. Metrologia 15, 5–12.

    Article  Google Scholar 

  • Kikuchi, T. (1989): Production of ultra-high magnetic fields and their application to solid state physics. In: Physica B 155, 23–32.

    Article  MathSciNet  Google Scholar 

  • Kikuchi, T. (1989): Megagauss Laboratory in Tokyo. In: Physica B 155, 106–110.

    Article  MathSciNet  Google Scholar 

  • Klügel, J.; Breitenbach, H. (1977): Elektronische Fluxmeter — Aufbau und Anwendung. Mess. u. Prüf. 13, 106–125.

    Google Scholar 

  • Koch, J.; Ruschmeyer, R. (1982): Permanentmagnete II (Anwendungen). 2. Aufl. Hamburg: Valvo.

    Google Scholar 

  • Koch, J.; Ruschmeyer, R. (1983): Permanentmagnete I (Grundlagen). 2. Aufl. Hamburg: Valvo.

    Google Scholar 

  • Koch, R. H.; Gallagher, W. J.; Bumble, B.; Lee, W. Y. (1989): Low-noise thin-film TIBaCaCuO dc SQUIDs operated at 77K. Appl. Phys. Lett. 54, 591–953.

    Article  Google Scholar 

  • Koch, H. (1990): Magnetic Field Sensors: SQUIDs. In Sensors vol. 5. Göpel, W. (ed.). Weinheim: VCH, 381.

    Google Scholar 

  • Kordic, S. (1986): Integrated 3-D Mangnetic Sensor Based on an n-p-n Transistor. IEEE Electron. Dev. Lett. EDI-4, 196–198.

    Article  Google Scholar 

  • Kordic, S. (1986): Integrated Silicon Magnetic-Field Sensors. Sens. Actuators 10, 347–378.

    Article  Google Scholar 

  • Kosorin, D. (1978): Non Balanced Wheatstone Bridges with Magnetodiodes and their Use in Measurement Technology. Izmer. Tekh. 6, 70–72.

    Google Scholar 

  • Kubiak, J.; Ostafin, M.; Kienitz, G. (1979): A New Fields Tracking NMR Magnetometer System. J. Phys. E.: Sci. Instrum. 12, 640–643.

    Article  Google Scholar 

  • Kuckuck, H. (1972): Magnetfelder hoher und höchster Intensität. Phys. in uns. Zeit 3, 131–137.

    Article  Google Scholar 

  • Lange, H.; Kohlhaas, R. (1958): Über die Konstruktion von Laboratoriumsmagneten. Zeitschr. f. angew. Physik 10, 461–467.

    Google Scholar 

  • Lange, H.; Kohlhaas, R. (1959): Über die Konstruktion von Labormagneten und ihre Verwendung bei metallkundlichen Untersuchungen. Ber. d. AG Ferromagnetismus 1958, 9–15.

    Google Scholar 

  • Laukien, G. (1958): Kernmagnetische Hochfrequenz-Spektroskopie. In: Flügge, S. (ed.). Handb. d. Phys. 38/1. Berlin: Springer.

    Google Scholar 

  • Ledley, B. G. (1970) Magnetometers for Space Measurements over a Wide Range of Field Intensities. Rev. Phys. Appl. 5, 164–168 List Datenblatt MG-1 (1972): Oberaichen.

    Article  Google Scholar 

  • Lösche, A. (1957): Kerninduktion. Berlin: Verlag der Wissenschaften.

    Google Scholar 

  • Lutes, O.S.; Nussbaum, P.S.; Aadland, O.S. (1980): Sensitivity Limits in SOS Magnetodiodes. IEEE Electron. Dev. Lett. EDL-27, 2156–2157.

    Google Scholar 

  • Machado Gama, M. A. (1975): System Design Considerations for Precision Measurement of High Magnetic Fields by Faraday Effect. Opt. & Quantum Electron. 7, 493–504.

    Article  Google Scholar 

  • Macintyre, S. A. (1980): A Portable Low Noise Low Frequency Three Axis Search Coil Magnetometer. IEEE Trans. Magn. MAG-6, 761–763.

    Article  Google Scholar 

  • Mager, A. (1970): Magnetic Shields. IEEE Trans. Magn. MAG-6, 67–75.

    Article  Google Scholar 

  • Mager, A. (1979): Untersuchungen über magnetische Abschirmungen. In: Entwicklung von weichmagnetischen Werkstoffen mit besonderen Eigenschaften. BMFT-FBT 79–32. Eggenstein-Leopoldshafen: FIZ 1979, 94–149.

    Google Scholar 

  • Mager, A. (1981) The Berlin Magnetically Shielded Room (BMSR), Section A: Design and Construction. Biomagn. Proc. Third Int. Workshop on Biomagnetism, Berlin (West), May 1980, 51–78. Berlin: De Gruyter.

    Google Scholar 

  • Martin, S. J.; Butler, M. A. (1985): Wideband optical fiber magnetic sensor. Proc. SPIE 566, 197–200.

    Google Scholar 

  • McCaig, M. (1967): Attraction and Repulsion. Mechanical Applications of Permanent Magnets. London: Oliver & Boyd.

    Google Scholar 

  • McCaig, M.; Clegg, A. G. (1987): Permanent Magnets in Theory and Practice. 2. Aufl. London: Pentech.

    Google Scholar 

  • McGregor, D. D. (1987): High-sensitivity helium resonance magnetometer. Rev. Sci. Instrum. 58, 1067–1076 Metrolab Data Sheet PT 2020 (1986): Genf, Schweiz.

    Article  Google Scholar 

  • Miller, J. R.; van Sciverr, S. W.; Markiewicz, W. D.; Schneider-Munthau, H. J. (1992): A design for the superconducting outsert of a 45 T hybrid magnet using cable-in-conduit conductors. To be published in: Proceedings of the Applied Superconductivity Conference, Chicago 1992, IEEE Trans. Superc.

    Google Scholar 

  • Miura, N.; Kido, Gü.; Miyamjima, H.; Nakao, K.; Chikazumi, S. (1981): Generation of Megagauss Fields by Electromagnetic Flux Compression. In: Chikazumi u. Miura (1981), 64-71.

    Google Scholar 

  • Miura, N.; Goto, K.; Nakao, K.; Takeyama, S.; Sakakibara, T.; Haruyama, T.; Kikuchi, T. (1989): Production of ultra-high magnetic fields and their application to solid state physics. In: Physica B 155, 23–32.

    Article  Google Scholar 

  • Miura, N.; Goto, K.; Nakao, K.; Takeyama, S.; Sakakibara, T.; Haruyama, T.; Todo, S.; Kikuchi, T. (1989). Megagauss Laboratory in Tokyo. In: Physica B 155, 106–110.

    Article  Google Scholar 

  • Miura, N. (1992): Recent Progress of Semiconductor Physics at the Megagauss Laboratory of the University of Tokyo. In: Landwehr, G. (Ed.): High Magnetic Fields in Semiconductor Physics III. Proceedings of the International Conference, Würzburg, 1990. Springerseries in Solid State Sciences 101. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Moczala, H. (1979): Elektrische Kleinstmotoren und ihr Einsatz. Grafenau: Expert.

    Google Scholar 

  • Mohaghegh, A.; Christoloveanu, S.; de Pontcharra, J. (1981): Double-Injection Phenomena Under Magnetic Field in SOS Films: A New Generation of Magnetosensitive Microdevices. IEEE Trans. El. Dev. ED-28, 237–242.

    Article  Google Scholar 

  • Mohri, K.; Kasai, K.; Kondo, T.; Fujiwara, H. (1983): Magnetometers Using Two Amorphous Core Multivibrator Bridge. IEEE Trans. Magn. MAG-19, 2142–2144.

    Article  Google Scholar 

  • Moskowitz, L. R. (1976): Permanent Magnet Design and Application Handbook. Boston: Cahners Book International.

    Google Scholar 

  • Nakagawa, Y.; Noto, K.; Hoshi, A.; Watanabe, K.; Miura, S.; Kido, G.; Muto, Y.: High field laboratory for superconducting materials, Institute for Materials Research, Tohoku University. In: Physica B 155, 69-73.

    Google Scholar 

  • Nielsen, C. J. (1985): All fiber magnetometer with magnetic feedback compensation. Proc. SPIE 566, 286–293.

    Google Scholar 

  • Parker, R. J.; Studders, R. J. (1962): Permanent Magnets and their Application. New York: Wiley.

    Google Scholar 

  • Parker, R. J. (1990): Advances in Permanent Magnetism. New York: Wiley.

    Google Scholar 

  • Parkinson, D. H.; Mulhall, B. E. (1967): The Generation of High Magnetic Fields. London: Heywood Books.

    Google Scholar 

  • Perenboom, J. A.-A. J.; van Hülst, K. (1989): The Nijmengen High Field Laboratory. In: Physica B 155, 74–77.

    Article  Google Scholar 

  • Pogodin, V.I.; Tikhomirov, N. P.; Uvarov, A.A. (1986): Galvanomagnetic Instruments for Operation in Cryogenic Electrical-Engineering Installations. Izmer. Tekh. 3, 26–27.

    Google Scholar 

  • Polgreen, G. R. (1966): New Applications of Modern Magnets. London: Macdonald.

    Google Scholar 

  • Poole, M. W.; Wa1ker, R. P. (1981): Halleffect Probes and their Use in a Fully Automated Magnetic Measuring System. IEEE Trans. Magn. MAG-17, 2129–2132.

    Article  Google Scholar 

  • Popovic, R. S.; Baltes, H. P. (1983): An Investigation of the Sensitivity of Lateral Magnetotransistors. IEEE Electron. Dev. Lett. EDL-4, 51–53.

    Article  Google Scholar 

  • Popovic, R. S.; Baltes, H. P.; Rudolf, F. (1984): An Integrated Silicon Magnetic Field Sensor Using the Magnetodiode Principle. IEEE Trans. El. Dev. ED-31, 286–291.

    Article  Google Scholar 

  • Primdahl, F.; Darker, W. (1971): Long-Term Stability of a Ferrite Core Fluxgate Magnetometer in High Field. IEEE Trans. Magn. MAG-7, 909–910.

    Article  Google Scholar 

  • Primdahl, F. (1979): The Fluxgate Magnetometer. J. Phys. E.: Sci. Instrum. 12, 241–253.

    Article  Google Scholar 

  • Primdahl, F.; Jensen, P. A. (1982) Compact spherical coil for fluxgate magnetometer vector feedback. J. Phys. E.: Sci. Instrum. 15, 221–226.

    Article  Google Scholar 

  • Proceedings of the First International Conference on Magnet Technology, Karlsruhe, 30. 3.-3. 4. 1981. IEEE Trans. Magn. MAG-17, No. 5 (1981).

    Google Scholar 

  • Rahf, L.; Sievert, J. D.; Zehler, V. (1978): Ein Kernresonanz-Magnetfeldmeßgerät für hohe Induktionen. J. Magn. Magn. Mat. 9, 261–263.

    Article  Google Scholar 

  • Rawson-Lush (1972): General Bulletin, Acton, USA.

    Google Scholar 

  • Rekalova, G. L; Kozlov, D. M.; Persiyanor, T. V. (1981): Magnetic Induction Transducers Based on Silicon Planar Transistors. IEEE Trans. Magn. MAG-17, 3373–3375.

    Article  Google Scholar 

  • Robinson, F. N. H. (1987): A convenient nuclear resonance magnetometer. J. Phys. E.: Sci. Instrum. 200, 502–504.

    Article  Google Scholar 

  • Rothwarf, F.; Leupold, H. A.; Jasper, Jr., L. J. (1978): Millimeter-Wave/Microwave Device Applications of Rare Earth-Cobalt Magnets. In: Strnat, K.J. (Hrsg.): Proceedings of the Third International Workshop on Rare Earth-Cobalt Permanent Magnets and their Applications. Dayton: University.

    Google Scholar 

  • Rubin, L.G.; Weggel, R. J.; Leupold, M. J.; Brandt, B.L.; Williams, J.E.C.; Iwasa, Y. (1989): The Francis Bitter Laboratory at MIT: 1988 Status. In: Physica B 155, 78–80.

    Article  Google Scholar 

  • Runcorn, S. K. (1960): Methods and Techniques in Geophysics. Bd. 1. Chichester: Wiley (Interscience).

    Google Scholar 

  • Rypalev, S. V. (1981): Reference Hall Teslameter for the Range 0,01–10T. Meas. Techn. 24, 154–157.

    Article  Google Scholar 

  • Schneider, D.; Salge, J. (1971): Technik gepulster hoher Magnetfelder mit kapazitiven und induktiven Speichern oder nach dem Kompressionsverfahren. Z. angew. Phys. 31, 346–359.

    Google Scholar 

  • Schneider-Munthau, H.-J. (1981): Polyhelix Magnets. IEEE Trans. Magn. MAG-17 (s. o.), 1775-1778.

    Google Scholar 

  • Schüler, K.; Brinkmann, K. (1970): Dauermagnete. Werkstoffe und Anwendungen. Berlin: Springer.

    Google Scholar 

  • Schwink, Ch. (1964): Neuzeitliche Verfahren zur Erzeugung sehr hoher Magnetfelder. Z. f. angew. Phys. 17, 131–136.

    Google Scholar 

  • Scott, G. B.; Springford, M.; Stockton, J. R. (1968): Use of a Magnetoresistor to Measure the Magnetic Field in a Superconducting Magnet. J. Phys. El, 925-928.

    Google Scholar 

  • Shiraishi, K.; Sugaya, S.; Kawakami, S. (1984): Fiber Faraday Rotator. Appl. Opt. 23, 1103–1106.

    Article  Google Scholar 

  • Shvetsov, G. A. (1989): Laboratory facility for the magnetic flux compression system using large exlosives. In: Physica B 155, 33–38.

    Article  Google Scholar 

  • Smythe, W. R. (1950): Static and Dynamic Electricity. New York: McGraw-Hill.

    Google Scholar 

  • Son, D. (1989): A New Type Of Fluxgate Magnetometer Using Apparent Coercive Field Strength Measurement. IEEE Trans. Magn. MAG-25, 3420–3422.

    Article  Google Scholar 

  • Stanley, J. M.; Ludbeg, F. C; Green, R. (1975): An Alkali Vapor Magnetometer Using Integrated Circuits. Space Sci. Instrum. 1, 471–492.

    Google Scholar 

  • Stäblein, H.; Baran, W. (1985): Die Anwendung von Dauermagneten. Techn. Mitt. Krupp. Forsch,-Ber. 43, 43–58.

    Google Scholar 

  • Takeuchi, S.; Harada, K. (1984): A Resonant-Type Amorphous Ribbon Magnetometer Driven By An Operational Amplifier. IEEE Trans. Magn. MAG-20, 1723–1725.

    Article  Google Scholar 

  • Tatam, R. P.; Berwick, M.; Leilabady, P. A.; Jones, J. D.; Jackson, D. A. (1987): Application of Faraday rotation using monomode optical fibre. Proc. SPIE 734, 178–192.

    Google Scholar 

  • Trojnar, K.; Koppetzki, N. (1989): High Field Magnets at the International Laboratory Wroclaw. In: Physica B 155, 85–86.

    Article  Google Scholar 

  • Tumanski, S. (1984): A New Type of Thin Film Magnetoresisitive Magnetometer — an Analysis of Circuit Principles. IEEE Trans. Magn. MAG-20, 1720–1722.

    Article  Google Scholar 

  • Von Borcke, U.; Martens, H.; Weiss, H. (1965): A New Method of Measuring Weak Magnetic Fields Using the Magnetoresistance of Indium Antimonide. Sol. State Electr. 8, 365–373.

    Article  Google Scholar 

  • Varian Techn. Inform. V-4938 (1965): Palo Alto, USA.

    Google Scholar 

  • Warmuth, K. (1939): Über den ballistischen Entmagnetisierungsfaktor zylindrischer Stäbe. Arch. Elektrot. 33 747–763.

    Article  Google Scholar 

  • Watson, J. K. (1980): Applications of Magnetism. New York: Wiley.

    Google Scholar 

  • Werninck, E.H. (1978): Electric Motor Handbook. London: McGraw-Hill.

    Google Scholar 

  • Weyand, K. (1982): Magnetfeldmeßverfahren bei niedrigen Feldstärken. PBT-Ber.E 22.

    Google Scholar 

  • Weyand, K. (1986): Homogene Magnetfelder in einlagigen Solenoiden durch ungleichmäßigen Strombelag. Arch. Elektrot. 69, 287–293.

    Article  Google Scholar 

  • Weyand, K. (1989): An NMR Marginal Oscillator for Measuring Magnetic Fields below 50 mT. IEEE Trans. Instr. Meas. T-IM 38, 410–414.

    Article  Google Scholar 

  • Wieder, H.H. (1971): Hall Generators and Magnetoresistors. London: Pion LTD.

    Google Scholar 

  • Wright, W.; McCaig, M. (1977): Permanent Magnets. Oxford: University Press.

    Google Scholar 

  • Wunderer, E. (1965): Measurement of Strength and Direction of Weak Magnetic Fields. Rev. Sci. Instrum. 36, 1054–1055.

    Article  Google Scholar 

  • Wurmbach, G.; Normann, N.; Mende, H.H. (1978). Measuring Equipment to Register the Local Dependence of Magnetic Fields with High Geometrical Resolution. J. Magn. Magn. Mat. 9, 242–244.

    Article  Google Scholar 

  • Yamagishi, A.; Date, M. (1989): High Magnetic Field Facility at Osaka University. In: Physica B 155, 91–95.

    Article  Google Scholar 

  • Zehler, V. (1977): The Demagnetizing Factor of Spheres between Pole Pieces of an Electromagnet. J. Magn. Magn. Mat. 6, 287–289.

    Article  Google Scholar 

  • Zhang, Y.; Diegel, M.; Heiden, C. (1989): Preparation and Performance of Toroidal Y1Ba2Cu3O7 X-RFSQUIDs. IEEE Trans. Magn. MAG-25, 869–871.

    Article  Google Scholar 

  • Zieren, V.; Duyndam, B. P. M. (1982): Magnetic-Field-Sensitive Multicollector n-p-n Transistors. IEEE Electron. Dev. Lett. EDL-29, 83–90.

    Google Scholar 

  • Zijlstra, H. (1967): Experimental Methods in Magnetism. Amsterdam: North-Holland.

    Google Scholar 

  • Zvenigorodskaya, A. I.; Lavrova, V.V.; Levitskaya, N.V.; Lukicheva, N.I.; Fischer, L. M. (1977): Magnetoresistive Transducers for Measuring Strong Magnetic Fields. Meas. Techn. 20, 428–430.

    Article  Google Scholar 

Literatur zu 5.3

  • Abramowitz, M.; Stegun, I.A. (1965): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. New York: Dover.

    Google Scholar 

  • Ahlers, H.; Sievert, J. D.; Qu, Qu, Ch. (1982): Comparison of a Single Strip Tester and Epstein Frame Measurements. J. Magn. Magn. Mater. 26, 218–220.

    Article  Google Scholar 

  • Ahlers, H.; Sievert, J. D. (1984): Uncertainties of Magnetic Loss Measurements, particularly in Digital Procedures. PTB-Mitt. 94, 99–107.

    Google Scholar 

  • Ahlers, H.; Sievert, J. D. (1991): Polarization. In: Landolt-Börnstein, New Series, Vol.: Units and Fundamental Constants, subvol. a. Berlin, 2/288-2/294.

    Google Scholar 

  • Aldenkamp, A.A.; Marks, C.P.; Zijlstra, H. (1960): Frictionless Recording Torque Magnetometer. Rev. Sci. Instrum. 31, 544–546.

    Article  Google Scholar 

  • Anderson, J. C. (1968): Magnetism and Magnetic Materials. London: Chapman & Hall.

    Google Scholar 

  • Archenhold, W. F.; Sandham, H.F.; Thompson, J. E. (1960): Rotational hysteresis loss in grainoriented silicon iron. British J. Appl. Phys. 11, 46–49.

    Article  Google Scholar 

  • Arts, H.J.J.; van der Steen, C; Poulis, J.A.; Massen, C. H. (1974): The Measurement of Magnetic Susceptibilities with Commercially Available Milli-Oerstedmeters III. Appl. Sci. Res. 29, 290–296.

    Article  Google Scholar 

  • ASTM (1970): Direct-Current Magnetic Measurements for Soft Magnetic Materials. Philadelphia: ASTM.

    Google Scholar 

  • ASTM (1973): Direct-Current Magnetic Hysteresigraphs. Philadelphia: ASTM.

    Google Scholar 

  • Aubert, G. (1968): Torque Measurements of the Anisotropy of Energy and Magnetization of Nickel. J. Appl. Phys. 39, 504–510.

    Article  Google Scholar 

  • Baran, W. (1985): Overview of Present and Potentional Applications of Permanent Magnets: Other than Motors. In: Strnat, K.J. (Hrsg.): Proceedings of the Eighth International Workshop on Rare-Earth Magnets and Their Applications. Dayton: University.

    Google Scholar 

  • Bates, L. F. (1961): Modern Magnetism. 4. Aufl. Cambridge: University Press.

    Google Scholar 

  • Becker, R.; Döring, W. (1939): Ferromagnetismus. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Becker, J.J. (1963): Magnetization Changes and Losses in Conducting Ferromagnetic Materials. J. Appl. Phys. 34, 1327–1332.

    Article  Google Scholar 

  • Beiß wenger, H.; Wachtel, E. (1955): Magnetische Waage zur Messung der Suszeptibilität. Z. Metallkunde 46, 504–507.

    Google Scholar 

  • Berkowitz, A. E.; Kneller, E. (Hrsg.) (1969): Magnetism and Metallurgy. New York: Academic Press.

    Google Scholar 

  • Birss, R. R.; Keeler, G. J.; Pearson, P.; Potton, R. J. (1978): A Capacitive Instrument for the Measurement of a Large Range of Magnetostriction at Low Temperatures and High Magnetic Fields. J. Phys. E-ll, 928-934.

    Google Scholar 

  • Boll, R. (1960): Wirbelstrom und Spinrelaxationsverluste in dünnen Metallbändern bei Frequenzen bis zu etwa 1 MHz. Z. angew. Phys. 12, 212–223.

    Google Scholar 

  • Boll, R. (Hrsg.) (1980): Magnettechnik. Grafenau: Expert-Verlag.

    Google Scholar 

  • Boll, R.; Hilzinger, H.R. (1987): Weichmagnetische kristalline und amorphe Metalle. Elektronik 22, 99–112.

    Google Scholar 

  • Boll, R. (1990): Weichmagnetische Werkstoffe. 4. Aufl. Hanau: Vacuumschmelze GmbH.

    Google Scholar 

  • Boll, R. (1990): Weichmagnetische Werkstoffe. 4. Aufl. Berlin, München: Siemens AG.

    Google Scholar 

  • Böiling, F.; Espenhahn, M.; Günther, K.; Hastenrath, M.; Huneus, H. (1987): Trends und Ziele in der Entwicklung hochwertiger Elektrobleche. Stahl und Eisen 107, 1119–1124.

    Google Scholar 

  • Boschi, A.; Bucci, C; Vignali, C. (1973): Susceptibility Measurements at High Frequency: A Versatile and Sensitive Apparatus. Rev. Sci. Instrum. 44, 899–901.

    Article  Google Scholar 

  • Bozorth, R. M. (1956): Ferromagnetism. 4. Aufl. New York: Nostrand.

    Google Scholar 

  • Brailsford, F. (1938): Rotational Hysteresis Loss in Electrical Steel Sheet. J. Inst. El. Eng. 83, 566–575.

    Google Scholar 

  • Brenner, R.; Pfeifer, F. (1961): Die Scherung der Anfangspermeabilität spiralig aufgewickelter Bandkerne. Frequenz 15, 87–89.

    Article  Google Scholar 

  • Brill, A. S.; den Hartog, H.; Legallais, V. (1958): Fast and Sensitive Magnetic Susceptometer for the Study of Rapid Biochemical Reactions. Rev. Sci. Instrum. 29, 383–391.

    Article  Google Scholar 

  • Brix, W.; Hempel, K.A.; Schulte, F.J. (1984): Improved method for the investigation of rotational magnetization process in electrical steel sheets. IEEE Trans. Magn. MAG-20, 1708–1710.

    Article  Google Scholar 

  • Burd, J.; Hug, M.; Lee, E. W. (1977): The Determination of magnetic Anisotropy Constants from Torque Curves. J. Magn. Magn. Mater. 5, 135–141.

    Article  Google Scholar 

  • Capptuller, H. (1962): Vollautomatisches Magnetwerkstoff Prüfgerät mit Analog-Digital-Wandler. Z. Instrkde. 70, 279–282.

    Google Scholar 

  • Carey, R.; Isaac, E. D. (1966): Magnetic Domains and Techniques for their Observation. New York, London: Academic Press.

    Google Scholar 

  • Cason-Pastor, N.; Gomez-Romero, P.; Balker, L. C. W. (1991): Magnetic Measurements with a SQUID Magnetometer: Possible Artifacts Induced by Sample-Holder Off-Centering. J. Appl. Phys. 69, 5088–5090.

    Article  Google Scholar 

  • Chapman, J. N. (1984): The investigation of magnetic domain structures in thin foils by electron microscopy. J. Phys. D.: Appl. Phys. 17, 623–647.

    Article  Google Scholar 

  • Chen, D.; Brug, J. A.; Goldfarb, R. B. (1991): Demagnetizing Factors for Cylinders. IEEE Trans. Magn. MAG-27, 3601–3619.

    Article  Google Scholar 

  • Chikazumi, S. (1978): Physics of Magnetism. Repr. Huntington: Krieger.

    Google Scholar 

  • Clark, A. E. (1980): Magnetrostrictive rareearth-Fe2 compounds. In: Ferromagnetic Materials, Vol. 1, Ed. E. P. Wohlfarth. North-Holland Publishing Company.

    Google Scholar 

  • Collinson, D. W.; Molyneux, L.; Stone, D. B. (1963): A Total and Anisotropie Susceptibility Meter. J. Sci. Instrum. 40, 310–312.

    Article  Google Scholar 

  • Craik, D.J.; Tebble, R. S. (1965): Ferromagnetism and Ferromagnetic Domains. Amsterdam: North Holland.

    Google Scholar 

  • Dahl, O.; Kußmann, A. (1954): Magnetometer I. Begriffsbestimmung und Theorie. ATM J 62-1, 37–38.

    Google Scholar 

  • Day, M. CL.; Hulett, L. D.; Willis, D.E. (1960): Counter Torque Quartz Fiber Adaption of the Curie-Cheneveau Type Magnetic Balance. Rev. Sci. Instrum. 31, 1142–1145.

    Article  Google Scholar 

  • Dellby, B.; Ekstrom, H. E. (1971): Magnetic Susceptibility Balance for Use in the Temperature Range 1, 6-300 K.J. Phys. E 4, 342–345.

    Article  Google Scholar 

  • De Mott, E.G. (1966): An Integrating Type of Electronic Hystersigraph. J. Appl. Phys. 37, 1118–1119.

    Article  Google Scholar 

  • Dietrich, H. (1967): Verfahren zur Bestimmung der Temperaturabhängigkeit der Entmagnetisierungskurve von Dauermagnetwerkstoffen. DEW-Techn. Ber. 7, 29–38.

    Google Scholar 

  • Dillon, Jr., J. F. (1963): Domains and Domain Walls. Rado u. Suhl, Magnetism. Bd. III. New York: Academic Press.

    Google Scholar 

  • DIN 17410 (1977): Dauermagnetwerkstoffe. Technische Lieferbedingungen.

    Google Scholar 

  • DIN 50460 (1988): Bestimmung der magnetischen Eigenschaften von weichmagnetischen Werkstoffen; Allgemeines, Begriffe, Grundlagen der Prüfverfahren.

    Google Scholar 

  • DIN 50462: Verfahren zur Bestimmung der magnetischen Eigenschaften von Elektroblech und-band im 25-cm-Epsteinrahmen. Teil 1 (1986): Allgemeines; Teil 5 (1991): Bestimmung der Kommutierungskurve der magnetischen Polarisation und der remanenten Induktion im Gleichfeld.

    Google Scholar 

  • DIN 50466 (1975): Bestimmung der komplexen Permeabilität und ihres Kehrwertes im magnetischen Wechselfeld.

    Google Scholar 

  • DIN IEC 404-7 (1985): Magnetische Materialien, Teil 7: Verfahren zur Messung der Koerzitivfeldstärke von magnetischen Werkstoffen in einem offenen Magnetkreis.

    Google Scholar 

  • DIN 50470 (1980): Prüfung von Dauermagnet Werkstoffen. Bestimmung der Entmagnetisierungskurve und der permanenten Permeabilität in einem Joch. Induktives Verfahren.

    Google Scholar 

  • DIN 50471 (1980): Prüfung von Dauermagnetwerkstoffen. Bestimmung der Entmagnetisierungskurve und der permanenten Permeabilität im Doppeljoch. Magnetostatisches Verfahren.

    Google Scholar 

  • Dwight, K.; Menyuk, N.; Smith, D. (1958): Further Development of the Vibrating-Coil Magnetometer. J. Appl. Phys. 29, 491–492.

    Article  Google Scholar 

  • Dwight, K. (1967): Experimental Techniques with General Applicability for the Study of Magnetic Phenomena. J. Appl. Phys. 38, 1505–1509.

    Article  Google Scholar 

  • Earnshaw, A. (1968): Introduction to Magnetochemistry. New York: Academic Press.

    Google Scholar 

  • Eaton, S. S.; Eaton, G. R. (1978): Inexpensive Moving Magnet-Stationary Sample Susceptibility Balance. Rev. Sci. Instrum. 49, 931–932.

    Article  Google Scholar 

  • Enokizono, M.; Suzuki, T.; Sievert, J.; Xu, J. (1990): Rotational power loss of silicon steel sheet. IEEE Trans. Magn. MAG-26, 2562–2564.

    Article  Google Scholar 

  • Ervens, W.; Wilmesmeier, H. (1990): Magnetic Materials. In: Ullmann’s Encyclopedia of Industria Chemistry, Vol. A 16. 5. Aufl. Weinheim VCH Verlagsgesellschaft.

    Google Scholar 

  • Evans, D. F. (1967): A Simple Gouy-Rankine Balance for Measuring Magnetic Suszeptibilities of Solid Paramagnetic Substances. J. Chem. Soc. Section A, 1670-1671. London: Department of Chemistry, Imperial College.

    Google Scholar 

  • Evans, D. F. (1974): A New Type of Magnetic Balance. J. Phys. E 7, 247–249.

    Article  Google Scholar 

  • Fahlenbrach, H.; Sixtus, K. (1949): Untersuchungen an verschiedenen pauschal unmagnetischen Zuständen. Z. Metallkde. 40, 187–193.

    Google Scholar 

  • Fahlenbrach, H. (1964): Die magnetischen Hochtemperaturnachwirkung weichmagnetischer Werkstoffe und ihr Zusammenhang mit der magnetischen Wärmebehandlung. Z. angew. Phys. 17, 104–107.

    Google Scholar 

  • Feldmann, D.; Hunt, R. P. (1964): Vibrationsmagnetometer, Überblick und Stand der Entwicklung. Z. Instrkde. 72, 259–265.

    Google Scholar 

  • Feldmann, D.; Hunt, R. P. (1965): Schaltungstechnik der Proben-Vibrationsmagnetometer. Z. Instrkde. 73, 62–65.

    Google Scholar 

  • Feldmann, D. (1965): Die magnetische Kristallanisotropie und ihre Messung mittels eines Probenvibrations-Magnetometers. Dissertation: Wien.

    Google Scholar 

  • Fernengel, W.; Wall, E.; Rodewald, W. (1991): Measurement of the Coercitivity jHc of RE-TM-Magnets by the SPD Technique. J. Magn. Magn. Mater. 101, 343–344.

    Article  Google Scholar 

  • Fiedler, O. (1980): Eigenschaften magnetischer Flüssigkeiten. Elektrie 30, 131–134.

    Google Scholar 

  • Fiorillo, F.; Sassi, M. P.; Soardo, G. P. (1980): Recent Advances in Measuring Methods in Soft Magnetic Materials. J. Magn. Magn. Mater. 19, 227–234.

    Article  Google Scholar 

  • Flanders, P. J. (1973): Magnetic Measurements with the Rotating-Sample Magnetometer. IEEE Trans. Magn. MAG-9, 94–109.

    Article  Google Scholar 

  • Flanders, P.J. (1988): An Alternating-Gradient Magnetometer. J. Appl. Phys. 63, 3940–3945.

    Article  Google Scholar 

  • Flanders, P.J. (1970): Utilization of a Rotating Sample Magnetometer. Rev. Sci. Instrum. 41, 697–710.

    Article  Google Scholar 

  • Fleischmann, C. W.; Turner, A. G. (1965): Apparatus for Measurement of Magnetic Anisotropy. Rev. Sci. Instrum. 37, 73–77.

    Article  Google Scholar 

  • Fletcher, E. J.; de Sa, A.; O’Reilly, W.; Banerjee, S. K. (1969): A Digital Vacuum Torque Magnetometer for the Temperature Range 300-1000 K. J. Sci. Instrum. 2, 311–314.

    Article  Google Scholar 

  • Foner, S. (1956): Vibrating Sample Magnetometer. Rev. Sci. Instrum. 27, 548.

    Article  Google Scholar 

  • Foner, S. (1959): Versatile and Sensitive Vibrating-Sample Magnetometer. Rev. Sci. Instrum. 30, 548–557.

    Article  Google Scholar 

  • Foner, S. (1967): Special Magnetic Measurement Techniques. J. Appl. Phys. 38, 1510–1519.

    Article  Google Scholar 

  • Foner, S.; McNiff, Jr., E.J. (1968): Very Low Frequency Integrating Vibrating Sample Magnetometer (VLFVSM) with High Differential Sensitivity in High dc Fields. Rev. Sci. Instrum. 39, 171–179.

    Article  Google Scholar 

  • Foner, S. (1981): Review of Magnetometry. IEEE Trans. Magn. MAG-17, 3358–3363.

    Article  Google Scholar 

  • Fowler, C. A.; Fryer, E. M. (1956): Magnetic Domains in Thin Films by the Faraday Effect. Phys. Rev. 104, 552–553.

    Article  Google Scholar 

  • Förster, R. (1955): Ein Betriebsgerät zur schnellen und genauen Messung der Koerzitivkraft und ihrer Temperaturabhängigkeit. Z. Metallkde. 46, 297–302.

    Google Scholar 

  • Förster, F. (1957): Die schnelle und genaue Messung der Koezitivkraft. ATM J 66-6, 65–66.

    Google Scholar 

  • Förster, F. (1957): Die schnelle und genaue Messung der Koezitivkraft. ATM J 66-7; 87–90.

    Google Scholar 

  • Frey, T.; Jantz, W.; Stibal, R. (1988): Compensating Vibrating Reed Magnetometer. J. Appl. Phys. 64, 6002–6007.

    Article  Google Scholar 

  • Frölich, F. (1952): Ferromagnetische Werkstoffe der Elektrotechnik, insbesondere der Fernmeldetechnik. Berlin: Verlag Technik.

    Google Scholar 

  • Fukuda, B.; Irie, T.; Shimanaka, H. (1977): Observation through Surface Coatings of Domain Structur in 3% Si-Fe Sheet by a High Voltage Scanning Electron Microscope. IEEE Trans. Magn. MAG-13, 1499–1504.

    Article  Google Scholar 

  • Geißler, L. K.; Rocker, W. (1964): Ein astatisches Kompensionsmagnetometer. Z. angew. Phys. 17, 258–261.

    Google Scholar 

  • Gerber, J. A.; Burmester, W. L.; Sellmyer, D. J. (1982): Simple Vibrating Sample Magnetometer. Rev. Sci. Instrum. 53, 691–693.

    Article  Google Scholar 

  • Gerstenberg, D. (1959): Anwendung eines Magnetfeldes schwacher Inhomogenität zur quantitativen Bestimmung geringer ferromagnetischer Beimengungen bei Suszeptibilitätsmessungen. Z. Metallkunde 50, 472–477.

    Google Scholar 

  • Göddecke, H. (1965): Ein neuartiges Torsionsmagnetometer. Beschreibung und Meßbeispiele. Techn. Mitt. Krupp Forsch. Ber. 23, 69–74.

    Google Scholar 

  • Graham, Jr., C. D. (1982): Iron and Nickel as Magnetization Standards. J. Appl. Phys. 53, 2032–2034.

    Article  Google Scholar 

  • Greenough, R. D.; Underbill, C. (1976): Strain Gauges for the Measurement of Magnetostriction in the Range 4 K to 300 K. J. Phys. E 9, 451–454.

    Article  Google Scholar 

  • Grossinger, R.; Katter, M.; Badurek, G.; Krewenka, R. (1991): The Construction of a Highly Sensitive Pulsed-Field Magnetometer for Measuring Hard Magnetic Materials. J. Magn. Magn. Mater. 101, 304–306.

    Article  Google Scholar 

  • Gumlich, E. (1927): Messungen an ferromagnetischen Stoffen. In: Geiger, H.; Scheel, K. (Hrsg.): Handbuch der Physik, Bd. 16: Apparate und Meßmethoden für Elektrizität und Magnetismus. Berlin: Springer.

    Google Scholar 

  • Heaton, J. W.; Rose-Innes, A. C(1963): Excitation of a Vibration Magnetometer: Especially Suitable for Use in Cryostats. J. Sci. Instrum. 14, 369.

    Article  Google Scholar 

  • Heck, C. (1975): Magnetische Werkstoffe und ihre technische Anwendung. 2. Aufl. Heidelberg: Hüthig.

    Google Scholar 

  • Heimke, G. (1976): Keramische Magnete. Wien: Springer.

    Book  Google Scholar 

  • Heister, W. (1966): Ein Beitrag zur Messung und Deutung der magnetischen und dielektrischen Stoffwerte von Ferriten und Massekernen im Dezimeterwellengebiet. Techn. Mitt. Krupp 24, 49–60.

    Google Scholar 

  • Hermann, P. K. (1957): Die Form von Proben für Eisen — Messungen. ATM V 959-1, 105–106.

    Google Scholar 

  • Hermann, P. K. (1957): Die Form von Proben für Eisen — Messungen. ATM V 959-2, 129–132.

    Google Scholar 

  • Hermann, P. K. (1957): Die Form von Proben für Eisen — Messungen. ATM V 959-3, 155–158.

    Google Scholar 

  • Herzer, G. (1992): Nanokristalline soft magnetic materials. J. Magn. Mater. 112, 258–262.

    Article  Google Scholar 

  • Hill, G. J. (1968): The Infuence of Positioning Errors on Susceptibility Measurement by the Faraday Method. J. Phys. E 1, 52–54.

    Article  Google Scholar 

  • Hoekstra, B.; Gyorgy, E. M.; Zydzik, G.; Flanders, P. J. (1977): Magnetostriction Measurements with a Recording Rotating Field Magnetostrictometer. Rev. Sci. Instrum. 48, 1253–1255.

    Article  Google Scholar 

  • Hoon, S. R.; Willcock, S.N.M. (1988): The Direct Observation of Magnetic Images in Electromagnet Vibrating Sample Magnetometers. J. Phys. E.21, 480–487.

    Google Scholar 

  • Houze, Jr., G. L. (1967): Domain-Wall Motion in Grain-Oriented Silicon Steel in Cyclic Magnetic Fields. J. Appl. Phys. 38, 1089–1096.

    Article  Google Scholar 

  • IEC 404-3 (1992): Methods of measurement of the magnetic properties of magnetic sheet and strip by means of a single sheet tester.

    Google Scholar 

  • IEC 404-8-1 (1986): Magnetic Materials, Part 8: Specifications for Individual Materials. Section One — Standard Specifications for Magnetically Hard Materials.

    Google Scholar 

  • Inaba, N.; Miyajima, H.; Chikazumi, S. (1988): Vector Magnetometer and Its Application to Measurement of Magnetization Vector in Some Ferromagnets. Jap. Appl. Phys. 27, 947–954.

    Article  Google Scholar 

  • Jahn, L. (1972): Ein empfindliches Schwingprobenmagnetometer zur Messung der Magnetisierungskurven hochkoerzitiver Einbereichsteilchen. Exp. Tech. Phys. 20, 249–258.

    Google Scholar 

  • Jahn, L. (1979): Einsatzmöglichkeiten des Vibrationsmagnetometers. Hermsdorfer Techn. Mitt. 19, 1715–1722.

    Google Scholar 

  • Jahn, L.; Scholl, R.; Eckert, D. (1991): Vibrating Sample Vector Magnetometer Coils. J. Magn. Magn. Mater. 101, 389–391.

    Article  Google Scholar 

  • Jellinghaus, W. (1952): Magnetische Messungen an ferromagnetischen Stoffen. Berlin: de Gruyter.

    Google Scholar 

  • Jones, F. J.; Tanner, B. K. (1980): A Double Axis X-Ray Diffractometer for Magnetostriction Measurements. J. Phys. E 13, 1183–1188.

    Article  Google Scholar 

  • Joseph, R. I.; Schlömann, E. (1965): Demagnetizing Field in Nonellipsoidal Bodies. J. Appl. Phys. 36, 1579–1593.

    Article  Google Scholar 

  • Joseph, R. I. (1967): Ballistic Demagnetizing Factor in Uniformly Magnetized Rectangular Prisms. J. Appl. Phys. 38, 2405–2406.

    Article  Google Scholar 

  • Josephs, R. M.; Crompton, D. S.; Krafft, C. S. (1987): Application of Digital Signal Processing to Vibrating Sample Magnetometry. IEEE Trans. Magn. MAG-23, 241–244.

    Article  Google Scholar 

  • Jost, K. (1957): Über zeitliche Folge und Größenverteilung von Barkhausen-Sprüngen. Z. Phys. 147, 520–530.

    Article  Google Scholar 

  • Kapitza, P.; Webster, W. L. (1931): A Method of Measuring Magnetic Susceptibility. Proc. Roy. Soc. A 132, 442–459.

    Article  Google Scholar 

  • Kaplan, L. M.; Chechurina, E.N. (1977): Modern Methods of Determining Characteristics of Magnetical Materials Review. Ind. Lab. 43, 1387–1393.

    Google Scholar 

  • Katane, T.; Yamaguchi, T.; Ito, T.; Sato, T.; Sakaki, Y. (1984): A high frequency iron less measuring system. IEEE Trans. Magn. MAG-20, 1729–1731.

    Article  Google Scholar 

  • Kaulfersch, H. (1969): Die Messung der magnetischen Spannung und der magnetischen Feldstärke nach dem Kompensationsverfahren. ATM V 391-10, 127–130.

    Google Scholar 

  • Kemper, M.; Reisewitz, U.; Heiden, C. (1991): Approach to Intrinsic Virgin Magnetization Curves of Nd-Fe-B Magnets Using a Feedback-Controlled VSM. J. Magn. Magn. Mater. 101, 299–300.

    Article  Google Scholar 

  • Kido, G.; Nakagawa, Y.; Ariizumi, T.; Nishio, H.; Takano, T. (1989): High Field Magnetometer Using Pulsed Magnet. In: Proceedinggs of the Tenth International Workshop on Rare-Earth Magnets and Their Applications. Tokyo: The Society of Non-Traditional Technology.

    Google Scholar 

  • Kneller, E. (1962): Ferromagnetismus. Berlin: Springer.

    MATH  Google Scholar 

  • Kohlhaas, R.; Müller, S. (1960): Über den Einfluß des Bildeffekts auf die Messung der magnetischen Sättigung bei Verwendung einer magnetischen Waage nach H. Lange und K. Mathieu. In: Berichte der Arbeitsgemeinschaft Magnetismus 1959. Düsseldorf: Stahleisen.

    Google Scholar 

  • Kohlhaas, R.; Lange, H. (1964): Eine magnetische Waage zur Absolutbestimmung der Suszeptibilität kleiner fester oder pulverförmiger Proben. Z. angew. Phys. 17, 448–452.

    Google Scholar 

  • Koppelmann, F.; Rubach, V. (1965): Untersuchung des 25-cm-Epsteinrahmens. ETZ-A86 (1965) 76–84.

    Google Scholar 

  • Kornetzki, M.; Lucas, I. (1955): Zur Theorie der Hystereseverluste im magnetischen Drehfeld. Z. f. Phys. 142, 70–82.

    Article  Google Scholar 

  • Kouvel, J. S.; Graham, Jr., C. D. (1957): On the Determination of Magnetocrystalline Anisotropy Constants from Torque Measurements. J. Appl. Phys. 28, 340–343.

    Article  Google Scholar 

  • Köhler, D. (1959): Der Frequenz-und Temperaturgang der komplexen Permeabilität hochpermeabler Ferrite. Arch, elektr. Übertragung 13, 1–12.

    Google Scholar 

  • Krause, D.; Ludwig, B.; Patz, U. (1969): Temperaturabhängigkeit der Kristall-Anisotropiekonstanten von Nickel bei tiefen Temperaturen. Z. angew. Phys. 26, 76–80.

    Google Scholar 

  • Kranz, J.; Hubert, A. (1963): Die Möglichkeiten der Kerr-Technik zur Beobachtung magnetischer Bereiche. Z. angew. Phys. 15, 220–232.

    Google Scholar 

  • Kranz, J.; Hubert, A.; Müller, R. (1964): Bitter-Streifen und Bloch-Wände. Z. Phys. 180, 80–90.

    Article  Google Scholar 

  • Kußmann, A. (1958): Magnetometer IV. Bankmagnetometer zur Untersuchung von Materialeigenschaften. ATM J 62-4, 33–36.

    Google Scholar 

  • Kußmann, A. (1958): Magnetometer V. Drehmagnetometer zur Untersuchung von Materialeigenschaften. ATM J 62-6, 61–62.

    Google Scholar 

  • Kußmann, A. (1961–62): Magnetische Waagen. ATM J 62-5 (1961), 277–278.

    Google Scholar 

  • Kußmann, A. (1961–62): Magnetische Waagen. ATM J 62-7 (1962), 15–18.

    Google Scholar 

  • Kußmann, A. (1961–62): Magnetische Waagen. ATM J 62-8 (1962), 39–42.

    Google Scholar 

  • Küpfmüller, K. (1965): Einführung in die theoretische Elektrotechnik. 8. Aufl. Berlin: Springer.

    MATH  Google Scholar 

  • Kwaaitaal, Th. (1977): The Measurement of Small Magnetostrictive Effects by an Interferometric Method. J. Magn. Magn. Mater. 6, 290–294.

    Article  Google Scholar 

  • Lachowicz, H.; Szymczak, H. (1984): Magnetostriction of amorphous magnetic materials. J. Magn. Magn. Mater. 41-7, 327–334.

    Article  Google Scholar 

  • Lee, E. W. (1979): Magnetostriction. In: Kalvius, G.M.; Tebble, R. S. (Hrsg.): Experimental Magnetism. New York: Wiley.

    Google Scholar 

  • Luborsky, F. E. (1980): Amorphous Ferromagnets. In: Wohlfarth, E. P. (Hrsg.): Ferromagnetic Materials. Bd. 1. Amsterdam: North Holland.

    Google Scholar 

  • Margerison, T. A.; Sucksmith, W. (1946): Some Uses of the Magnetic Potentiometer for the Determination of Magnetization Curves upon Open-Circuited Specimens. J. Sci. Instrum. 23, 182–184.

    Article  Google Scholar 

  • Martin, Y.; Wickramasinghe, H. K. (1987): Magnetic imaging by force microscopy with 1000 Å resolution. Appl. Phys. Lett. 50, 1455–1457.

    Article  Google Scholar 

  • Mazetti, P.; Soardo, P. (1966): Electronic Hysteresigraph Holds dB/dt Constant. Rev. Sci. Instrum. 37, 548–552.

    Article  Google Scholar 

  • Me Clure, J. C; Schroder, K. (1976): The magnetic Barkhausen Effect. Crit. Rev. Solid State Sci. (USA) 6, 45–83.

    Article  Google Scholar 

  • Mellentin, K.; Lange, H. (1955): Über ein neues astatisches Magnetometer zur Messung ferromagnetischer Blechproben in Gleich-und Wechselfeldern. Z. Metallkde. 46, 450–456.

    Google Scholar 

  • Miculec, M.; Havlicek, V.; Wiglasz, V.; Cech, D. (1984): Comparision of loss measurements on sheets and strips. J. Magn. Magn. Mater. 41, 223–226.

    Article  Google Scholar 

  • Mills, Jr., A. P. (1974): Method for Measuring Magnetic Moments with Precision. J. Appl. Phys. 45, 5440–5442.

    Article  Google Scholar 

  • Mohr, A.; Utsch, B. (1987): Herstellung und Anwendung von Kalibriermagneten für magnetische Messungen, etz Archiv 9, 283–287.

    Google Scholar 

  • Mohri, K.; Takeuchi, S.; Fujimoto, T. (1979): Domain and Grain Observations Using a Colloid Technique for Grain-Oriented Si-Fe with Coatings. IEEE Trans. Magn. MAG-15, 1346–1349.

    Article  Google Scholar 

  • Morrish, A. H. (1965): The Physical Principles of Magnetism. New York: Wiley.

    Google Scholar 

  • Mulay, L.N. (1972): Techniques of Magnetic Susceptibility. In: Weissberger, A.; Rossiter, B.W. (Hrsg.): Physical Methods of Chemistry. Teil I, Vol.4. New York: Interscience.

    Google Scholar 

  • Mulay, L. N.; Mulay, I.T. (1980): Magnetic Suspectibility: Instrumentation and Analytical Applications Including Bioscience, Catalysis and Amorphous Materials. Analyt. Chem. 52, 199 R–214R.

    Article  Google Scholar 

  • Muirhead, F. R. (1962): A Torsion Balance for Magnetic Measurements on Individual Small Particles. J. Sci. Instrum. 39, 633–635.

    Article  Google Scholar 

  • Nagata, S.; Fujita, E.; Ebishu, S.; Taniguchi, S. (1987): Optimum Design of Detection Coil System Vibrating Sample Magnetometer. Jap. J. Appl. Phys. 26, 92–95.

    Article  Google Scholar 

  • Narita, K.; Yamaguchi, T. (1975): Rotational and Alternating Hysteresis Losses in 4% Silicon-Iron Single Crystal with the 110 Surface. IEEE Trans. Magn. MAG-11, 1661–1666.

    Article  Google Scholar 

  • Narita, K.; Yamasaki, J.; Fukanaga, H. (1980): Measurement of saturation magnetostriction of thin amorphous ribbon by means of small-angle magnetization rotation. IEEE Trans. Magn. MAG-16, 435–439.

    Article  Google Scholar 

  • Neumann, H. (1949–50): Die Koerzitivkraft Hc, Definitionen und physikalische Meßgrundlagen. Arch. Elektrotech. 39 (1949), 534–543.

    Article  Google Scholar 

  • Neumann, H. (1949–50): Die Koerzitivkraft Hc, Definitionen und physikalische Meßgrundlagen. Arch. Elektrotech. 39 (1950), 578–600.

    Article  Google Scholar 

  • Neumann, H. (1955): Messung der Gleichstrommagnetisierungskurve und der Hysteresisschleife. ATM V 951-1, 105–108.

    Google Scholar 

  • Nielsen, O.V.; Zaitzev, VI. (1973): An Electrostatic Driven Vibrating Sample Magnetometer Especially Suitable for Magnetic Anisotropy Measurements. J. Phys. E 6, 1022–1024.

    Article  Google Scholar 

  • O’Conner, C. J.; Deaver, Jr., B.S.; Sinn, E. (1979): Chrystal structures of A2FeCl5H2O (A = Rb-, Cs-) and field dependent superconducting susceptometer measurements. J. Chem. Phys. 70, 5161–5167.

    Article  Google Scholar 

  • Osborn, J. A. (1945): Demagnetizing Factors of the General Ellipsoid. Phys. Rev. 67, 351–357.

    Article  Google Scholar 

  • Overshott, K. J. (1976): The Use of Domain Observations in Understanding and Improving the Magnetic Properties of Transformer Steels. IEEE Trans. Magn. MAG-12, 840–845.

    Article  Google Scholar 

  • Owers-Brandley, J.R.; Wen-Sheng Zhou; Halperin, W. P. (1981): Simple Wide Temperature Range AC Susceptometer. Rev. Sci. Instrum. 52, 1106–1108.

    Article  Google Scholar 

  • Pacy na, A. W. (1982): General Theory of the Signal Induced in a Vibrating Magnetometer. J. Phys. E5, 663–669.

    Google Scholar 

  • Penoyer, R. F. (1959): Automatic Torque Balance for Magnetic Anisotropy Measurements. Rev. Sci. Instrum. 30, 711–714.

    Article  Google Scholar 

  • Perenboom, J. A.-A. J. (1981): A Simple, but Sensitive Magnetometer for Use in High Magnetic Fields. Physica 107 B, 589–590.

    Google Scholar 

  • Pfützner, H. (1980): Anwendungen von Hallgeneratoren im Vergleich zu anderen Methoden der Feldstärkeerfassung bei der Prüfung von Elektroblechen. Z. elektr. Inform.-u. Energietechnik 10, 534–546.

    Google Scholar 

  • Pfützner, H. (1981): A new colloid technique enabling domain observations of Si-Fe sheets with coating at zero field. IEEE Trans. Magn. MAG-17, 1245–1247.

    Article  Google Scholar 

  • Pfützner, H. (1985): Observation of domains and grain boundaries in soft magnetic materials. Proc. Blackpool Conference on Soft Magnetic Materials 7, Wolfson Centre for Magnetics Technology, Cardiff, 66-71.

    Google Scholar 

  • Philo, J. S.; Faibank, W. M. (1977): High-sensitivity magnetic susceptometer employin superconducting technology. Rev. Sci. Instrum. 48, 1529–1536.

    Article  Google Scholar 

  • Popplewell, J.; Charles, S. W. (1981): Ferromagnetic Liquids — Their Magnetic Properties and Applications. IEEE Trans. Magn. MAG-17, 2923–2928.

    Article  Google Scholar 

  • Pugh, E. W. (1958): Completely Nonmagnetic Alloy for Instrumentation in Magnetic Fields. Rev. Sci. Instrum. 29, 1118–1119.

    Article  Google Scholar 

  • Quinn, R. K.; Knauer, R. C. (1972): Low Temperature Faraday Susceptibility Apparatus. Rev. Sci. Instrum. 43, 1543–1544.

    Article  Google Scholar 

  • Rahf, L.; Sievert, J. D. (1987): Microprocessor — Controlled Test Assembly for Electrical Steel Sheets. IEEE Trans. Instrum Meas. IM-36, 847–850.

    Google Scholar 

  • Rahf, L. (1989): A Precise and Versatile Calibrator for Fluxmeters. J. Magn. Magn. Mater. 83, 541–542.

    Article  Google Scholar 

  • Raj, K.; Moskowitz, R. (1990): Commercial Applications of Ferrofluids. J. Magn. Magn. Mater. 85, 233–245.

    Article  Google Scholar 

  • Rankine, A. O. (1934): A Simple Method of Demonstrating the Paramagnetism and Diamagnetism of Substances in Magnetic Fields of Low Intensity. Proc. Phys. Soc. 46, 391–407.

    Article  Google Scholar 

  • Reiche I. K. (1980): Praktikum der Magnettechnik. München: Franzis.

    Google Scholar 

  • Reinboth, H. (1970): Technologie und Anwendung magnetischer Werkstoffe. 3. Aufl. Berlin: VEB Technik.

    Google Scholar 

  • Roos, W.; Hempel, K. A.; Voigt, C; Dederichs, H.; Schippan, R. (1980): High Sensitivity Vibrating Reed Magnetometer. Rev. Sci. Instrum. 51, 612–613.

    Article  Google Scholar 

  • Rusbüldt, V; Özkaya, M. (1956): Messung der Ummagnetisierungsverluste an kleinen Proben kornorientierter Bleche mit der Wechselstrombrücke. ETZ-A 77, 295–297.

    Google Scholar 

  • Salceanu, C. (1938): Magnetisch neutrale Lösungen. Z. Phys. 108, 439–443.

    Article  Google Scholar 

  • Sanford, R. L.; Cooter, I. L. (1962): Basic Magnetic Quantities and the Measurement of the Magnetic Properties of Materials. NBS Monograph 47. Washington: NBS.

    Google Scholar 

  • Schlenker, M.; Baruchel, J. (1978): Neutron Techniques for the Observation of Ferro-and Antiferromagnetic Domains. J. Appl. Phys. 49, 1996–2001.

    Article  Google Scholar 

  • Schmidt, F.; Rave, W.; Hubert, A. (1985): Enhancement of magneto-optical observation by digital image processing. IEEE Trans. Magn. MAG-21, 1596–1598.

    Article  Google Scholar 

  • Schelleng, J. H. (1973): Nonresonance Methods. In: Passaglia, E. (Hrsg.): Technics of Metals Research VI, Measurement of Physical Properties 2: Magnetic Properties and Mossbauer Effect. New York: Wiley.

    Google Scholar 

  • Schüler, K.; Brikmann, K. (1970): Dauermagnete. Werkstoffe und Anwendungen. Berlin: Springer.

    Google Scholar 

  • Schmidt, K.-H.; Birkelbach, G. (1979): ein verbesserter elektronischer Leistungsmesser u. seine Anwendung bei der Bestimmung des Ummagnetisierungsverlustes von Elektroblech. J. Magn. Magn. Mater. 13, 22–26.

    Article  Google Scholar 

  • Schneider, H. P. (1981): Measurement Procedure for Ring Specimens in the Audio Frequency Range. J. Magn. Magn. Mater. 24, 221–227.

    Article  Google Scholar 

  • Seiwood, P.W. (1956): Magnetochemistry. 2. Aufl. New York: Interscience.

    Google Scholar 

  • Shoenberg, D. (1952): The de Haas-van Alphen Effect. Phil. Trans. Roy. Soc. A245, 1–57.

    Google Scholar 

  • Sievert, J. D. (1976): Anisotropy of Energy and Magnetization of iron-rich SiFe-Alloys. J. Magn. Magn. Mater. 2, 162–166.

    Article  Google Scholar 

  • Sievert, J. D.; Zehler, V. (1977): The Real Demagnetization Factor of a Soft Magnetic Sphere in the Air Gap of an Iron Core Magnet. Proc. 3rd EPS Conf. on Soft Magn. Mat., Bratislava 1977, 346–350.

    Google Scholar 

  • Sievert, J. D.; Rahf, L.; Qu, Qu.-Ch. (1981): Single Strip Tester for the Determination of Magnetic Losses and Hysteresis Parameters. J. Magn. Magn. Mater. 24, 218–220.

    Article  Google Scholar 

  • Sievert, J. D. (1984): Determination of AC magnetic power loss of electrical steel sheet: present status and trends. IEEE Trans. Magn. MAG-20, 1702–1707.

    Article  Google Scholar 

  • Sievert, J.D.; Ahlers, H.; Siebert, S.; Enokizono, M. (1990): On the Calibration of Magnetometres Having Electromagnets with the Help of Cylindical Nickel Reference Samples. IEEE Trans. Magn. MAG-26, 2052–2054.

    Article  Google Scholar 

  • Sievert, J. D.; Xu, J.; Rahf, L.; Enokizono, M.; Ahlers, H. (1990): Studies on Rotational Power loss Measurement Problem. Anales de Fisica Serie B, Vol.86, 35–37.

    Google Scholar 

  • Smit, J.; Wijn, H. P.J. (1954): Physical Properties of Ferrites. Adv. in Electronics and Electron Physics 6, 69–136.

    Article  Google Scholar 

  • Splittgerber, A. G.; Gill, S. H. (1971): A Torsion Balance for Magnetic Susceptibility Measurements on Fluids. Rev. Sci. Instrum. 42, 110–113.

    Article  Google Scholar 

  • Springford, W.; Stockton, J. R.; Wampler, W. R. (1971): A Vibrating Sample Magnetometer for Use with a Superconducting Magnet. J. Phys. E 4, 1036–1040.

    Article  Google Scholar 

  • Squire, P.T.; Gibbs, M.R.J. (1987): Fibre-optic dilatometer for measuring magnetostriction in ribbon samples. J. Phys. E.: Sci. Instrum. 20, 499–502.

    Article  Google Scholar 

  • Steingroever, E. (1966): Some Measurements of Inhomogeneous Permanent Magnets by Pole-Coil Method. J. Appl. Phys. 37, 1116–1117.

    Article  Google Scholar 

  • Steingroever, E. (1976): Kalibrieren von Dauermagnet-Meßgeräten mit Nickel. J Magn. Magn. Mater. 2, 267–269.

    Article  Google Scholar 

  • Stewart, A.M. (1972): Laterial Instability of the Gouy Magnetometer. J. Phy. E 5, 978–979.

    Article  Google Scholar 

  • Steinhaus, W. (1927): Die magnetischen Eigenschaften der Körper. In: Geiger, H.; Scheel, K. (Hrsg.): Handbuch der Physik, Bd. 15: Magnetismus. Elektromagnetisches Feld. Berlin: Springer.

    Google Scholar 

  • Stierstadt, K. (1966): Der Magnetische Barkhausen-Effekt. Erg. Exact. Naturwiss. 40, 2–106.

    Google Scholar 

  • Strnat, K.; Bartimay, L. (1967): A Recording High-Field Oscillating-Specimen Magnetometer. J. Appl. Phys. 38, 1305–1307.

    Article  Google Scholar 

  • Sucksmith, W. (1929): An Apparatus for the Measurement of Magnetic Susceptibility. Phil. Mag. 8, 158–165.

    Google Scholar 

  • Sullivan, M. (1980): Wheatstone Bridge Technique for Magnetrostriction Measurements. Rev. Sci. Instrum. 51, 382–383.

    Article  Google Scholar 

  • Tanner, B. K. (1976): X-ray Diffraction Topography. Oxford: Pergamon Press.

    Google Scholar 

  • Tebble, R. S.; Craik, D.J. (1969): Magnetic Materials. London: Wiley.

    Google Scholar 

  • Thorpe, A.; Senftle, F. E. (1959): Absolute Method of Measuring Magnetic Susceptibility. Rev. Sci. Instrum. 30, 1006–1008.

    Article  Google Scholar 

  • Trout, S. R. (1988): Use of Helmholtz Coils for Magnetic Measurements. IEEE Trans. Magn. MAG-24, 2108–2111.

    Article  Google Scholar 

  • Tsuno, K.; Ueno, K.; Harada, Y. (1981): High Magnification Observation of Magnetic Domains by Means of a High Voltage Scanning Electron Microscope. Jap. J. Appl. Phys. 20, 1467–1472.

    Article  Google Scholar 

  • Valenzuela, R. (1980): A Sensitive Method for the Determination for the Curie Temperature in Ferrimagnets. J. Mater. Sci. 15, 3173–3174.

    Article  Google Scholar 

  • Van Oosterhout, G. W.; Nordermeer, L. J. (1963–64): Fast and Accurate Magnetic Measurements on Samples Weighing a Few Milligramms. Philips Techn. Rev. 25, 227–233.

    Google Scholar 

  • Vickery, R. C; Sexton, W. C. (1960): Simple Transducer Type Magnetic Balance. Rev. Sci. Instrum. 31, 647–649.

    Article  Google Scholar 

  • Vogler, G. (1955): Magnetostriktionsmeßapparaturen. Nachrichtentechnik 5, 310–313.

    Google Scholar 

  • Vonsovskii, S.V. (1974): Magnetism. New York: Wiley.

    Google Scholar 

  • Weiss, A.; Witte, H. (1973): Magnetochemie. Grundlagen und Anwendungen. Weinheim: Verlag Chemie.

    Google Scholar 

  • Wengerter, R. (1991): Anwendungen amorpher weichmagnetischer Legierungen. In: Warlimont, H. (Hrsg.): Magnetwerkstoffe und Magnetsysteme. Oberursel: DGM Informationsgesellschaft mbH.

    Google Scholar 

  • Williams, H. J.; Bozorth, R. H.; Shockley, W. (1949): Magnetic Domain Patterns of Single Crystals of silicon Iron. Phys. Rev. 75, 155–183.

    Article  Google Scholar 

  • Wiliams, D. G. E. (1966): The Magnetic Properties of Matter. London: Longmans.

    Google Scholar 

  • Wilkins, F. J.; Drake, A. E. (1970): Automatic measurement of local power losses in grain-oriented silicon iron. Proc. IEE117, 1048–1051.

    Google Scholar 

  • Wohlleben, D.; Maple, M. B. (1971): Application of the Faraday Method to Magnetic Measurements under Pressure. Rev. Sci. Instrum. 42, 1572–1578.

    Article  Google Scholar 

  • Woodbridge, D.B. (1935): Diamagnetism of Alkyl-Acetates. Phys. Rev. 48, 672–682.

    Article  Google Scholar 

  • Würschmidt, J. (1925): Theorie des Entmagnetisierungsfaktors. Braunschweig: Vieweg.

    Google Scholar 

  • Yamamoto, T.; Ohya, Y. (1974): Single Sheet Tester for Measuring Core Losses and Permeabilities in a silicon Steel Sheet. IEEE Trans, magn. MAG-10, 157–160.

    Article  Google Scholar 

  • Zatko, D. A.; Davis, G. T. (1972): Sapphire Filaments as Hang-Down Supports for Magnetic Susceptibility Balances. Rev. Sci. Instrum. 43, 818–819.

    Article  Google Scholar 

  • Zehler, V. (1977): The Demagnetizing Factor of Spheres between Pole Pieces of an Electromagnet. J. Magn. Magn. Mater. 6, 287–289.

    Article  Google Scholar 

  • Zijlstra, H. (1967): Experimental Methods of Magnetism. 2. Measurement of Magnetic Quantities. Amsterdam: North Holland.

    Google Scholar 

  • Zijlstra, H. (1970): A Vibrating Reed Magnetometer for Microscopic Particles. Rev. Sci. Instrum.41, 1241–1244.

    Article  Google Scholar 

  • Zimmels, Y. (1977): Measurement of Specific Gravity and Magnetic Susceptibility of Particulate Materials by exitation in Paramagnetic Solutions. IEEE Trans. Magn. MAG-13, 959–962.

    Article  Google Scholar 

  • Zurmühl, R. (1965): Praktische Mathematik für Ingenieure und Physiker. Berlin: Springer.

    Book  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 B. G. Teubner, Stuttgart

About this chapter

Cite this chapter

Sievert, J. (1996). Magnetismus. In: Kose, V., et al. Praktische Physik. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-87207-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-87207-4_1

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-87208-1

  • Online ISBN: 978-3-322-87207-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics