Skip to main content

Coupled Problems in Microsystem Technology

  • Chapter
Numerical Treatment of Coupled Systems

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NONUFM,volume 51))

Summary

In microsystem technology, the numerical simulation of coupled problems is one of the principal challenges. We present a classification of the most important occurring couplings, and we give a survey of existing solution techniques with emphasis on the so-called partitioned solution. Here, there is no joint model, neither continuous nor discrete, but the coupled problem is solved by an outer iteration for the coupling and by arbitrary inner solution processes for each single problem. The coupling is done via changed boundary conditions, geometries, or parameters after each step of iteration. This approach seems to be advantageous, since its modularity allows the use of existing and efficient codes for each sub-problem. Thus, only the outer iteration has to be organized with some kind of interface for the coupling. Furthermore, this technique is perfectly suited for parallelization, especially for the use of (heterogeneous) workstation clusters. For the simulation of a micro-miniaturized two-valve membrane pump, first numerical results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. J. Balling, J. Sobieszczanski-Sobieski, Optimization of coupled problems: A critical overview of approaches, Technical Report, ICASE: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA, USA, 1994.

    Google Scholar 

  2. A. Boley and H. Weiner, Theory of thermal stresses, Wiley, New York, 1962.

    Google Scholar 

  3. T. Dornseifer, M. Griebel, and T. Neunhoeffer, Numerische Simulation — Eine praxisorientierte Einfiihrung am Beispiel der Strömungsmechanik,Vieweg Verlag, to appear.

    Google Scholar 

  4. C. A. Felippa and T. L. Geers, Partitioned analysis for coupled mechanical systems, Eng. Comput., 7 (1988), pp. 331–342.

    Google Scholar 

  5. C. A. Felippa and K. C. Park, Staggered transient analysis procedures for coupled mechanical systems, Computer Methods in Applied Mechanics and Engineering, 24 (1980), pp. 61–111.

    Article  MATH  Google Scholar 

  6. H. Fujita and T. Ikoma, Numerical determination of the electromechanical field for a micro servosystem, Sensors and Actuators, A21–A23 (1990), pp. 215–218.

    Google Scholar 

  7. C. Gear, The potential for parallelism in ordinary differential equations, tech. report, University of Illinois at Urbana-Champaign, 1986.

    Google Scholar 

  8. W. Göpel, J. Hesse, and J. Zemel, Sensors, A Comprehensive Survey, vol. 1: Fundamentals and General Aspects, VCH Verlagsgesellschaft mbH, Weinheim, 1989.

    Google Scholar 

  9. W. S. Griffin, H. H. Richardson, and S. Yamanami, A study of fluid squeeze-film damping, Transactions of the ASME, Journal of Basic Engineering, (1966), pp. 451–456.

    Google Scholar 

  10. W. Hackbusch, Iterative Lösung großer schwachbesetzter Gleichungssysteme, Teubner, Stuttgart, 1991.

    MATH  Google Scholar 

  11. E. Hinton, P. Bettess, and R. W. Lewis, eds., Numerical Methods for Coupled Problems Proceedings of the International Conference Held at the University College, Swansea, 7.-11. 9. 1981, Pineridge Press, 1981.

    Google Scholar 

  12. J. Itoh, T. Ebihara, Y. Kubota, and A. Takahashi, Simulation of tape floating behavior in VTR, Trans. ASME, Journal of Tribology, 115 (1993), pp. 561–565.

    Article  Google Scholar 

  13. P. Kaufmann, Force balance accelerometer for cost-sensitive application, Sensors, (1988), p. 19.

    Google Scholar 

  14. T. Kerkhoven and Y. Saad, On acceleration methods for coupled nonlinear elliptic systems, Numerische Mathematik, (1992), pp. 525–548.

    Google Scholar 

  15. K. Kohno, S. Takahashi, and K. Saki, Elasto-hydrodynamic lubrication analysis of journal bearings with combined use of boundary elements and finite elements, Engineering Analysis with Boundary Elements, 13 (1994), pp. 273–281.

    Article  Google Scholar 

  16. R. W. Lewis, P. Bettess, and E. Hinton, eds., Numerical Methods in Coupled Systems, John Wiley and Sons, 1984.

    Google Scholar 

  17. Y. Mitsuya, Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip-flow model and considering surface accommodation coe f ficient, ASME Journal of Tribology, 115 (1993), pp. 289–294.

    Article  Google Scholar 

  18. J. Ortega and W. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, Inc., 1970.

    MATH  Google Scholar 

  19. D. K. Paul, O. C. Zienkiewicz, and E. Hinton, Transient dynamic analysis of reservoir-dam interaction using staggered solution schemes, in Numerical Methods for Coupled Problems, Pineridge Press, 1981.

    Google Scholar 

  20. R. Rosenbergand D. Karnopp, Introduction to Physical Dynamics, McGraw-Hill, New York, 1983.

    Google Scholar 

  21. S. Schulte, Simulation of cross coupled effects in physical sensors, vde-verlag gmbh Berlin, Offenbach, 1994, pp. 833–842.

    Google Scholar 

  22. S. Senturia, R. Harris, B. Johnson, S. Kim, and K. Nabors, A computer-aided design system for microelectromechanical systems (MEMCAD), Journal of Microelectromechanical Systems, 1 (1992), pp. 3–13.

    Article  Google Scholar 

  23. W. Spencer, W. Corbett, L. Dominguez, and B. Shafer, An electronically controlled piezoelectric insulin pump and valves, IEEE Transactions On Sonics And Ultrasonics, SU-25 (1978), pp. 153–156.

    Google Scholar 

  24. J. B. Starr, Squeeze-film damping in solid-state accelerometers, in Tech. Digest of IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, USA, 1990, pp. 44–47.

    Chapter  Google Scholar 

  25. J. Thoma, Simulation by Bondgraphs. Introduction to a Graphical Method, Springer-Verlag, Berlin-Heidelberg, 1990.

    Google Scholar 

  26. H.-P. Trah, H. Baumann, C. Doring, H. Goebel, T. Grauer, And M. Mettner, Micromachined valve with hydraulically actuated membrane subsequent to a thermoelectrically controlled bimorph cantilever, Sensors and Actuators A, 39 (1993), pp. 169–176.

    Article  Google Scholar 

  27. T. Tschan, Simulation, Design and Characterization of a Silicon Piezoresistive Accelerometer, Fabricated by a Bipolar-Compatible Industrial Process, PhD thesis, University of Neuchatel, Switzerland, 1992.

    Google Scholar 

  28. G. Wachutka, Tailored modeling of miniaturized electrothermomechanical systems using thermodynamic methods, in Micromechanical Systems, D. Cho, J. Peterson, A. Pisano, and C. Friedrich, eds., vol. 40, 1992.

    Google Scholar 

  29. H. Yie, X. Cai, And J. White, Convergence properties of relaxation versus the surface-Newton generalized-conjugate residual algorithm for self-consistent electromechanical analysis of 3-d micro-electro-mechanical structures, in International Workshop on Numerical Modeling of Processes and Devices for Integrated Circuits: NUPAD V (Cat. No.94TH06403), Honolulu, IEEE 0 7803 1867 6, June 1994, pp. 137–140.

    Article  Google Scholar 

  30. R. Zengerle, Mikro-Membranpumpen als Komponenten für Mikro-Fluidsysteme, PhD thesis, Universität der Bundeswehr München, 1994.

    Google Scholar 

  31. R. Zengerle, S. Kluge, M. Richter, and A. Richter, A bidirectional silicon micropump. To be published, 1995.

    Google Scholar 

  32. O. C. Zienkiewicz, Coupled problems and their numerical solution, in Numerical Methods in Coupled Systems, R. W. Lewis, P. Bettess, and E. Hinton, eds., John Wiley and Sons, 1984.

    Google Scholar 

  33. O. C. Zienkiewicz and R. E. Newton, Coupled vibrations of a structure submerged in a compressible fluid, in Proc. Int. Symp. on Finite Element Techniques, Stuttgart, 1.15. 5. 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Bungartz, HJ., Schulte, S. (1995). Coupled Problems in Microsystem Technology. In: Hackbusch, W., Wittum, G. (eds) Numerical Treatment of Coupled Systems. Notes on Numerical Fluid Mechanics (NNFM), vol 51. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-86859-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-86859-6_2

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-86861-9

  • Online ISBN: 978-3-322-86859-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics