Skip to main content

Flexibility and Efficiency of a Transport-Equation Turbulence Model for Three-Dimensional Flow

  • Chapter
New Results in Numerical and Experimental Fluid Mechanics

Part of the book series: Notes on Numerical Fluid Mechanics (NNFM) ((NONUFM,volume 60))

Summary

For the prediction of the aerodynamic performance of aircraft or aircraft components, the modeling of the viscous, in particular the turbulent effects is of ever increasing importance. In order to improve the quality of numerical simulations of complex configurations, a more general description of the fluid dynamics as well as a high flexibility in relation to the topology of the computation and high numerical efficiency is required. In this work an algebraic turbulence model, the Baldwin-Lomax model, and a transport equation turbulence model, the two-equation k-ω model of Wilcox, are used for the simulation of the flow around a realistic 3-D Wing-Body configuration. Using single and multiblock versions of the same grid, it is shown that the k-ω model delivers the same results, independent of the number or structure of the blocks, whereas the Baldwin-Lomax model does not. In terms of additional costs, the k-ω model required, for the same number of iterations on the same grid, approximately 40% more memory and 50% more time than the Baldwin-Lomax model. Additionally, issues of grid convergence and a surface roughness boundary condition for the k-ω model are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldwin, B., Lomax, H., Thin Layer Approximation and Algebraic Model For Separated Turbulent Flows, AIAA-Paper 78–0257 (1978).

    Google Scholar 

  2. Cook, P.H., Mc Donald, M.A., Firmin, M.C.P., Aerofoil RAE 2822 - Pressure Distributions and Boundary Layer and Wake Measurements, AGARD-AR-138 (1979).

    Google Scholar 

  3. Eisfeld, B., Bleecke, H.-M., Kroll, N., Ritzdorf, H., Parallelization of Block Structured Flow Solvers, AGARD R-807, pp 5. 1–5. 20, 1995.

    Google Scholar 

  4. Elsholz, E., Longo, J.M.A., Navier-Stokes Simulation of a Transonic Wing-body Configuration., 1993 European Forum `Recent Developments and Applications in Aeronautical CFD`, Sept. 1–3, 1993, Bristol, UK.

    Google Scholar 

  5. Installation and User Handbook for the Project FLOWer, Internal Doc. No. QS-FLOWer-3008.

    Google Scholar 

  6. Mavriplis, D.J., Martinelli, L., Multigrid Solution of Compressible Turbulent Flow on Unstructured Meshes Using a Two-Equation Model, NASA CR 187513 (1991).

    Google Scholar 

  7. Monsen, E., Rudnik, R., Investigation of the Blunt Trailing Edge Problem for Supercritical Airfoils, AIAAPaper 95–0089 (1995).

    Google Scholar 

  8. Projecktbeschreibung MEGA FLOW, DLR-IB I 29–96/8 1996.

    Google Scholar 

  9. Radespiel, R., Rossow, C.-C., Swanson, C., Efficient Cell-Vertex Multigrid Scheme for the Three-Dimensional Navier-Stokes Equations, AIAA-Journal, Vol. 28, No. 8, pp. 1464–1472 (1990).

    Article  Google Scholar 

  10. Redeker, G., Müller, R., A Comparison of Experimental Results for the Transonic Flow around the DFVLR-F4 Wing Body Configuration, DFVLR-IB 129–83 /71 (1983).

    Google Scholar 

  11. Rudnik, R., Ronzheimer, A., Schenk, M., C.-C. Rossow, Berechnung von 2- und 3-dimensionalen Hochauftriebskon/igurationen durch Lösung der Navier-Stokes Gleichungen,DGLR-Jahrestagung, 24.09.27.09.1996, Dresden.

    Google Scholar 

  12. Wilcox, D.C., Reassessment of the Scale-Determining Equation for Advanced Turbulence Models, AIAA. Journal, Vol 26, pp. 1299–1310 (Nov. 1988).

    Article  MATH  MathSciNet  Google Scholar 

  13. Wilcox, D.C., Turbulence Modeling for CFD, DCW Industries, Inc., La Canada, CA, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Monsen, E., Rudnik, R., Bleecke, H. (1997). Flexibility and Efficiency of a Transport-Equation Turbulence Model for Three-Dimensional Flow. In: Körner, H., Hilbig, R. (eds) New Results in Numerical and Experimental Fluid Mechanics. Notes on Numerical Fluid Mechanics (NNFM), vol 60. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-86573-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-86573-1_30

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-322-86575-5

  • Online ISBN: 978-3-322-86573-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics