Skip to main content

Abstract

X-ray protein crystallography has contributed so much to the progress in molecular biology that one might ask whether the use of other radiations than X-rays might facilitate the analysis at least in special cases. In fact, already quite early neutron scattering has been used [1, 2] which allows the determination of the positions of the H-atoms and which facilitates phase determination with anomalous scattering. Furthermore, experiments for the use of nuclear resonance scattering have been started [3] with the aim to utilize the very strong nuclear resonance scattering of Fe57 for phase determination of protein crystals with large protein molecules. It is, therefore, not surprising that also the use of electron rays for the crystallography of native protein crystals has been discussed and that first experiments have been undertaken in order to get some ideas concerning the feasibility of this approach [4]. One advantage is immediately evident: Due to the extremely strong scattering of electrons — compared with the scattering of X-rays or neutrons — very small specimens can be studied. It is well-known that growing of large crystals is often a difficult problem in protein crystallography. The crystals must be extremely small, if conventional accelerating voltages (order of magnitude 100 kV) are applied and if the convenient kinematical theory ought to be sufficient for the calculation of the structure factors (like in X-ray crystallography). It can be shown that the thickness of the crystal should not exceed several ten nanometers1). Due to the limited size of the specimen, electron microscopical means are necessary for the inspection and handling of the tiny crystals. Therefore, instruments have to be used where an electron microscope is combined with a selected area diffractometer — all modern microscopes have this facility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schoenborn, B. P., A. C., Nunes, R. Nathans, Ber. Buns. Ges. phys. Chem. 74, 1203 (1970).

    Google Scholar 

  2. Engelman, D. M„ P. B. Mone, B. P. Schoenborn, Brookhaven Symp. Biol. 27, IV-20(1975).

    Google Scholar 

  3. Parak, F., R. L. Mössbauer, W. Hoppe, Ber. Buns. Ges. phys. Chem. 74, 1207 (1970).

    Google Scholar 

  4. Hoppe, W., R. Langer, G. Knesch, Ch. Poppe, Naturw. 55, 333 (1968)

    Article  Google Scholar 

  5. Hoppe, W., Ber. Buns. Ges. phys. Chem. 74, 1090 (1970).

    Google Scholar 

  6. Hoppe, W., Phil. Trans. Roy. Soc. London 261, 71 (1971).

    Article  Google Scholar 

  7. McLachlan, Jr. D., Proc. Nat. Acad. Sci. USA 44, 948 (1958).

    Article  Google Scholar 

  8. Glaeser, R. M., in Physical Aspects of Electron Microscopy and Microbeam Analysis, Siegel, B., Beaman, D. R., eds., John Wiley and Son (1975)

    Google Scholar 

  9. Parsons, D. F., Science 186, 407 (1974).

    Article  Google Scholar 

  10. Unwin, P. N. T., R. J. Henderson, Molec. Biol. 94, 425 (1975).

    Article  Google Scholar 

  11. Henderson, R., P. N. T. Unwin, Nature 257, 28 (1975).

    Article  Google Scholar 

  12. Hoppe, W., H. Wenzl, H. J. Schramm, Hoppe-Seyler’s Physiol. Chem. 358, 1069 (1977).

    Google Scholar 

  13. Langer, R., Ch. Poppe, H. J. Schramm, W. Hoppe, J. Mol. Biol. 93, 159 (1975).

    Google Scholar 

  14. Hoppe, W., Naturw. 55, 65 (1968), see p. 73.

    Article  Google Scholar 

  15. Taylor, K. A., R. M. Glaeser, Science 186, 1036 (1974).

    Article  Google Scholar 

  16. Glaeser, R. M., K. A. Taylor, Proc. of the Sbcth Europ. Congr. Electr. Micr., Jerusalem, Vol. I, p. 69 (1976). Tal International Pubi. Comp.

    Google Scholar 

  17. Thomanek, U. F., F. Parak, R. L. Mössbauer, H. Formanek, P. Schwager, W. Hoppe, Acta Cryst. A29, 263 (1973).

    Google Scholar 

  18. Hoppe, W., H. J. Schramm, M. Sturm, N. Hunsmann, J. Gaßmann, Z. Naturforsch. 31a, 1380 (1976), see p. 1389.

    Google Scholar 

  19. M. Sturm., Proc. Roy. Soc. A225, 264 (1954).

    Google Scholar 

  20. Frank, J., Ultramicroscopy 1, 159 (1975).

    Article  Google Scholar 

  21. Saxton, W. O., J. Frank, Ultramicroscopy 2, 219 (1976).

    Article  Google Scholar 

  22. Frank, J., in Annals New York Acad. Sci. 306, 112 (1978), ed. Parsons D.F.

    Google Scholar 

  23. Valentine, R. C., Adv. Opt. Electron Micr. 1, 180 (1966).

    Google Scholar 

  24. Kratky, O., E. Treiber, J. Schurz, Ber. Buns. Ges. phys. Chem. 56, 143 (1952), see also Kahovec, L. and Weiss, H., Monatshefte für Chemie 93, 336 (1962).

    Google Scholar 

  25. Kuo, K. A. M., R. M. Glaeser, Ultramicroscopy 1,53 (1975).

    Article  Google Scholar 

  26. Briiders, R., K. H. Hermann, D. Krahl, H. P. Rust, Proc. 6th Europ. Congr. Electr. Microsc., Jerusalem, Vol. II, p. 318 (1976). Tal Intern. Pbl. Comp.

    Google Scholar 

  27. Hoppe, W., Acta Cryst. A26, 414 (1970).

    Google Scholar 

  28. Bodo, G., H. M. Dintzis, J. C. Kendrew, H. W. Wyckoff, Proc. Roy. Soc. A253, 70 (1959), (see Fig. 12).

    Article  Google Scholar 

  29. Hoppe, W., A. Hirt, A, Feltynowski, D. Köstler, R. Hegerl, Acta Cryst. A31, S. 291 (1975).

    Google Scholar 

  30. Hoppe, W., Z. Naturforsch. 26a, 1155 (1971).

    Google Scholar 

  31. Hoppe, W. D. Köstler, D. Typke, N. Hunsmann, Optik 42, 43 (1975).

    Google Scholar 

  32. Hoppe, W., D. Köstler, P. Sieber, Z. Naturforsch. 29a, 1933 (1974).

    Google Scholar 

  33. Hoppe, W., D. Köstler, Proc. 6th Europ. Congr. Electr. Micr., Jerusalem, Vol. I, p. 99 (1976), Tal International Publ. Comp.

    Google Scholar 

  34. Typke, D., D. Köstler, Ultramicroscopy 2, 285 (1977).

    Article  Google Scholar 

  35. Hoppe, W., Z. Naturforsch. 27a, 919 (1972).

    Google Scholar 

  36. Typke, D., W. Hoppe, W. Seßler, M. Burger, Proc. 6th Europ. Congr. Electr. Micr., Jerusalem, Vol. 1, p. 334 (1976), Tal International Publ. Comp.

    Google Scholar 

  37. Kunath, W., Proc. 5th Europ. Congr. Electr. Microsc. p. 70, Manchester (1972).

    Google Scholar 

  38. Kunath, W., Dissertation, Tübingen (1977).

    Google Scholar 

  39. Scherzer, O., Optik 38, 387 (1973).

    Google Scholar 

  40. Hoppe, W., H. Wenzl, H. J. Schramm, Proc. 6th Europ. Congr. Electr. Micr., Jerusalem, Vol. II, p. 58 (1976), Tal International Publ. Comp.

    Google Scholar 

  41. DeRosier, D. J., A. Klug, Nature London 217, 130 (1968).

    Article  Google Scholar 

  42. Hoppe, W., N. Hunsmann, H. J. Schramm, M. Sturm, B. Grill, J. Gaßmann, Proc. 6th Europ. Congr. Electr. Micr., Jerusalem, Vol. I. p. 8 (1976), Tal International Publ. Comp.

    Google Scholar 

  43. Crowther, R. A., A. Klug Ann. Rev. Biochem. 44, 161 (1975).

    Article  Google Scholar 

  44. Beer, M., J. Frank, K.-J. Hanszen, E. Kellenberger, R. C. Williams, Quarterly Reviews of Biophysics 7, 2, P. 211 (1975).

    Article  Google Scholar 

  45. Williams, R. C, H W. Fisher, J. Mol. Biol. 52, 121 (1970).

    Article  Google Scholar 

  46. Hegerl, R., W. Hoppe, Z. Naturforsch. 31a, 1717 (1976).

    Google Scholar 

  47. Ottensmeyer, F. P., E. E. Schmidt, T. Jack, J. Powell, J. Ultrastr. Res. 40, 546 (1972).

    Article  Google Scholar 

  48. Ottensmeyer, F. O., E. E. Schmidt, A. J. Olbrecht, Science 179, 175 (1973).

    Article  Google Scholar 

  49. Frank, J., M. Kessel, D. Eisenberg, T.S. Baker, Biophys. Journ. 21, 89a (1978)

    Google Scholar 

  50. Frank, J, Biophys. Journ. 21, 156a (1978).

    Google Scholar 

  51. DeRosier, D. J., P. B. Moore, J. Mol. Biol. 52, 355 (1970).

    Article  Google Scholar 

  52. Finch, J T,A. Klug Phil. Trans. Roy. Soc. Lond. B261, 211 (1971).

    Google Scholar 

  53. Amos, L. A., J. Mol. Biol. 99, 65 (1975).

    Article  Google Scholar 

  54. Sperling, L., L. A. Amos, A. Klug, J. Mol. Biol. 92, 541 (1975) (Dahlemse strain of TMV).

    Article  Google Scholar 

  55. Holmes, K. C., G. J Stubbs, Mandelkow, E. Nature 254, 192 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

W. Hoppe R. Mason

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig

About this chapter

Cite this chapter

Hoppe, W. (1979). Three-Dimensional Low Dose Reconstruction of Periodical Aggregates. In: Hoppe, W., Mason, R. (eds) Unconventional Electron Microscopy for Molecular Structure Determination. Advances in Structure Research by Diffraction Methods / Fortschritte der Strukturforschung mit Beugungsmethoden. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-86362-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-86362-1_8

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-08117-1

  • Online ISBN: 978-3-322-86362-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics