Advertisement

Recent advances in the understanding of some selective mechanisms in man

  • Giuseppe Montalenti
Chapter
Part of the Rheinisch-Westfälische Akademie der Wissenschaften book series (VN, volume 243)

Abstract

Darwin’s discovery (1859) of natural selection as the main agent of evolution and the consequential corollaries and implications are sometimes referred to as “the Darwinian revolution”, which is second in time only, not in importance, to the Copernican-Galileian revolution. In fact the main trends of thought and lines of investigation in modern biology are still proceeding along the track marked by Darwin’s fundamental work, as well as by another achievement reached in the XIX century, namely the recognition of the cellular structure of organisms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, A. C., 1954. Protection afforded by Sickle-cell trait against subtertian malarial infection. Brit. med. Journ., I, p. 290.Google Scholar
  2. Id., 1956. The Sickle and haemoglobin C genes in some African populations. Ann. Hum. Genet. 21, p. 67.CrossRefGoogle Scholar
  3. Bernini, L., 1969. Rapid estimation of haemoglobin A2 by DEAE chromatography. Bio- chem. Genet. 2, p. 305.Google Scholar
  4. Bienzle, U., Lucas, A. C., Ayeni, O., Luzzatto, L., 1972. Glucose-6-phosphate dehydrogenase and malaria. The Lancet, Jan. 15, p. 107.Google Scholar
  5. Bottini, E., Lucarelli, P., Agostino, R., Palmarino, R., Businco, L., Antognoni, G., 1971. Favism: association with erythrocyte acid phosphatase phenotype. Science, 171, p. 409.CrossRefGoogle Scholar
  6. Bottini, E., Lucarelli, p., Bastianon, V., Gloria, F., 1972. Erythrocyte acid phosphatase polymorphism and hemolysis. Journ. Med. Genet. 9, p. 434.CrossRefGoogle Scholar
  7. Carcassi, U., Ceppellini, R., Pitzus, F., 1957. Frequenza della talassemia in quattro popolazioni sarde e suoi rapporti con la distribuzione dei gruppi sanguigni e della malaria. Boll. 1st. Sieroter. Milanese, 36, p. 207.Google Scholar
  8. Conconi, F., Rowley, P. T., Del Senno, L., Pontremoli, S., 1972. Introduction of beta- globin synthesis in the beta-thalassaemia of Ferrara. Nature New Biology, 238, p. 83.Google Scholar
  9. Dobzhansky, TH., 1937. Genetics and the Origin of species. New York. Columbia University Press.Google Scholar
  10. Dunn, L. C., 1960. Variations in the transmission ratios of alleles through egg and sperm in house mouse. Amer. Naturalist, 94, p. 385.CrossRefGoogle Scholar
  11. Fermi, C., 1938. La Malaria in Sardegna. Sassari.Google Scholar
  12. Fisher, R. A., 1930. The genetical theory of natural selection. London. Oxford University Press.Google Scholar
  13. Gall, J. C., Brewer, G. J., Dern, R. J., 1965. Studies of glucose-6-phosphate dehydrogenase activity of individual erythrocytes: the methemoglobin-elution test for indentification of female heterozygous for G6PD deficiency. Amer. Journ. Human Genet. 17, p. 359.Google Scholar
  14. Haldane, J. B. S., 1949. The rate of mutation of human genes. Proc. VIIIth Internat. Congr. Genetics. Hereditas. Suppl. 35, p. 267.Google Scholar
  15. Hiernaux, J., 1952. La génétique de la sicklémie et l’intérêt anthropologique de sa fréquence en Afrique noire. Ann. Mus. Congo belge, Anthropologie, 2, p. 42.Google Scholar
  16. Kimura, M., 1968. Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genetical Research, 11, p. 247.CrossRefGoogle Scholar
  17. Ingram, V. M., 1959. Abnormal human hemoglobins III. The chemical difference between normal and sickle-cell haemoglobin. Biochim. et Biophys. Acta, 36, p. 402.Google Scholar
  18. Ingram, V. M., Stretton, A. O. W., 1959. Genetic basis of the thalassemia diseases, Nature, 184, p. 1903.CrossRefGoogle Scholar
  19. Luzzatto, L., Usanga, E. A., Reddy, S., 1969. Glucose-6-phosphate dehydrogenase deficient red cells: Resistance to infection by malarial parasites. Science, 164, p. 839.CrossRefGoogle Scholar
  20. Luzzatto, L., Nwachuku-Jarrett, S., Reddy, S., 1970. Increased sickling of parasitized erythrocytes as mechanism of resistance against malaria in the sickle cell trait. The Lancet. Feb. 14, p. 319.Google Scholar
  21. Modiano, G., Scozzari, R., Gigliani, F., Filippi, G., Latte, B., 1967. Studies on red cell phosphoglucomutase and adenylate kinase polymorphisms in Sardinia. Rend. Acc. Naz. Lincei, ser. 8a, 42, p. 906.Google Scholar
  22. Modiano, G., Filippi, G., Brunelli, F. and Siniscalco, M., 1968. Red cell acid phosphatase activity in carriers of ß-thalassemia trait and glucose-6-phosphate dehydrogenase deficiency. Israel Journ. Med. Sci. 4, p. 858.Google Scholar
  23. Montaqlenti, G., 1954. The genetics of microcythemia. Proc. 9th Int. Congr. Genetics. Caryologia, Suppl. vol. 6, p. 554.Google Scholar
  24. Id., 1959. Polymorphisme et gènes létaux et sublétaux chez Phomme. Ardi. d. Julius Klaus- Stiftung für Vererbungsforsch. Sozialanthropol. u. Rassehyg. 34, p. 279.Google Scholar
  25. Id., 1965. Infectious diseases as selective agents. Symp. of the Eug. Soc. on Biological aspects of Social problems. Edinburgh. Oliver and Boyd, p. 135.Google Scholar
  26. Id., 1967. Genetica di popolazioni umane. Acc. Naz. Lincei, Quaderno n. 94.Google Scholar
  27. Montalenti, G., Silvestroni, E., Bianco, I., 1953. Nuove indagini sul problema della microcitemia. Rend. Acc. Naz. Lincei, ser. 8a, 14, p. 183.Google Scholar
  28. Nicoletti, B., 1967. II controllo genetico della meiosi. Atti Assoc. Genet Ital., 13, p. 3.Google Scholar
  29. Piomelli, S., Siniscalco, M., 1969. The haematological effects of glucose-6-phosphate dehydrogenase deficiency and thalassemia trait: interaction between the two genes at the phenotypic level. Brit. Journ. Haematol., 16, p. 537.CrossRefGoogle Scholar
  30. Rensch, B., 1947. Neuere Probleme der Abstammungslehre. Stuttgart. F. Enke. (2nd ed. 1954 ).Google Scholar
  31. Sansone, G., Rasore-Quartino, A., Veneziano, G., 1963. Dimostrazione su strisci di sangue di una doppia popolazione eritrocitaria nelle donne eterozigote per la deficienza in glucosio-6-fosfato deidrogenasi. Pathologica, 55, p. 371.Google Scholar
  32. Silvestroni, E., Bianco, I., 1963. Le emoglobine umane: biochimica, genetica, popola- zionistica, patologia e clinica in: Gedda, L. De Genetica medica vol. IV, p. 205.Google Scholar
  33. Siniscalco, M., Bernini, L., Filippi, G., Latte, B., Meer A Khan, P., Piomelli, S. and Rattazzi, M., 1966. Population genetics of haemoglobin variants, Thalassemia and glucose-6-phosphate dehydrogenase deficiency, with particular reference to malaria hypothesis. Bull. World Health Organis., 34, p. 379.Google Scholar
  34. Terrenato, L., 1973. Beta and non beta-thalassemia in Sardinia and their frequencies. Ann. Hum. Genet., 36, p. 285.CrossRefGoogle Scholar
  35. Vogel, F., Pettenkofer, H. J., Helmbold, W., 1960. Über die Populationsgenetik der ABO-Blutgruppen. 2. Mitt. Genhäufigkeit und epidemische Erkrankungen. Acta Genet., 10, p. 267.Google Scholar
  36. Vogel, F., Kruger, J., 1968. Statistische Beziehungen zwischen der ABO-Blutgruppe und Krankheiten mit Ausnahme der Infektionskrankheiten. Blut, 16 p. 351.CrossRefGoogle Scholar

Copyright information

© Westdeutscher Verlag GmbH, Opladen 1974

Authors and Affiliations

  • Giuseppe Montalenti
    • 1
  1. 1.RomeItaly

Personalised recommendations