Skip to main content

Antibiotic Uptake into Gram-Negative Bacteria

  • Chapter
Perspectives in Antiinfective Therapy

Abstract

Antibiotics taken up into gram-negative bacteria face two major diffusion barriers, the outer and cytoplasmic membranes. Of these, the former has been most studied and is discussed in detail here. Evidence from antibiotic MIC studies on porin-deficient mutants compared with their porin-sufficient parent strains has provided strong support for the proposal that some antibiotics, particularly β-lactams, pass across the outer membrane through the water-filled channels of a class of proteins called porins. Nevertheless substantial evidence has accumulated for the importance of non-porin pathways of antibiotic uptake across the outer membranes of gram-negative bacteria. Examples discussed include the uptake of polycationic antibiotics via the self-promoted pathway, the uptake of hydrophobic antibiotics in some bacterial species and in mutants of others via the hydrophobic pathway, and the possible importance of poorly understood non-porin pathways of uptake of a variety of antibiotics. Other potential barriers to diffusion, including the cytoplasmic membrane, are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hancock, R. E. W.: Aminoglycoside uptake and mode of action — with special reference to streptomycin and gentamicin. Journal of Antimicrobial Chemotherapy 1981, 8: 249–276.

    Article  PubMed  CAS  Google Scholar 

  2. Hancock, R. E. W.: Aminoglycoside uptake and mode of action — with special reference to streptomycin and gentamicin. Journal of Antimicrobial Chemotherapy 1981, 8: 429–445.

    Article  PubMed  CAS  Google Scholar 

  3. Nikaido, H., Vaara, M.: Molecular basis of bacterial outer membrane permeability. Microbiological Reviews 1985, 49:1–32.

    PubMed  CAS  Google Scholar 

  4. Nikaido, H., Hancock, R. E. W.: Outer membrane permeability of Pseudomonas aeruginosa. In: Sokatch, J.R. (ed.): The bacteria: a treatise on structure and function, Volume 10. Academic Press, New York, 1985, p. 145 – 193.

    Google Scholar 

  5. Leive, L.: The barrier function of the gram-negative cell envelope. Annals of the New York Academy of Sciences 1974, 235: 109–127.

    Article  PubMed  CAS  Google Scholar 

  6. Hancock, R. E. W.: Model membrane studies of porin function. In: Inouye, M. (ed.): Bacterial outer membranes as model systems. John Wiley, New York, 1986, p. 187–225.

    Google Scholar 

  7. Nakae, T.: Identification of the major outer membrane protein of Escherichia coli that produces transmembrane channels in reconstituted vesicle membranes. Bio-chimica et Biophysica Acta 1976, 71: 877–884.

    CAS  Google Scholar 

  8. Zimmermann, W., Rosselet, A.: Function of the outer membrane of Escherichia coli as a permeability barrier to β-lactam antibiotics. Antimicrobial Agents and Chemotherapy 1977, 12: 368–372.

    Article  PubMed  CAS  Google Scholar 

  9. Nicas, T. I., Hancock, R. E. W.: Pseudomonas aeruginosa outer membrane permeability: isolation of a porin protein F-deficient mutant. Journal of Bacteriology 1983, 153: 281–285.

    PubMed  CAS  Google Scholar 

  10. Mitsuyama, J., Hiruma, R., Yamaguchi, A., Sawai, T.: Identification of porins in outer membrane of Proteus, Morganella and Providencia spp. and their role in outer membrane permeation of β-lactams. Antimicrobial. Agents and Chemotherapy 1987, 31: 379–384.

    Article  CAS  Google Scholar 

  11. Harder, K. J., Nikaido, H., Matsuhashi, M.: Mutants of Escherichia coli that are resistant to certain β-lactam compounds lack the OmpF porin. Antimicrobial Agents and Chemotherapy 1981, 20: 549–552.

    Article  PubMed  CAS  Google Scholar 

  12. Then, R. L., Angehrn, P.: Multiply resistant mutants of Enterobacter cloacae selected by β-lactam antibiotics. Antimicrobial Agents and Chemotherapy 1986, 30: 684–688.

    Article  PubMed  CAS  Google Scholar 

  13. Woodruff, W. A., Hancock, R. E. W.: Construction and characterization of Pseudomonas aeruginosa protein F-deficient mutants after in vitro and in vivo insertion mutagenesis of the cloned gene. Journal of Bacteriology 1988, 170: 2592–2598.

    PubMed  CAS  Google Scholar 

  14. Godfrey, A. J., Bryan, L. E.: Penetration of β-lactams through Pseudomonas aeruginosa porin channels. Antimicrobial Agents and Chemotherapy 1987, 31: 1216 – 1221.

    Article  PubMed  CAS  Google Scholar 

  15. Hancock, R. E. W.: Role of porins in outer membrane permeability. Journal of Bacteriology 1987, 169: 929–933.

    PubMed  CAS  Google Scholar 

  16. Siden, I., Boman, H.: Escherichia coli mutants with altered sensitivity to cecropin D. Journal of Bacteriology 1983, 154: 170–176.

    PubMed  CAS  Google Scholar 

  17. Bedard, J., Wong, S., Bryan, L. E.: Accumulation of enoxacin by Escherichia coli and Bacillus subtilis. Antimicrobial Agents and Chemotherapy 1987, 31: 1348 – 1354.

    Article  PubMed  CAS  Google Scholar 

  18. Watanabe, N.-A., Nagasu, T., Katsu, K., Kitoh, K.: E-0702, a new cephalosporin, is incorporated into Escherichia coli cells via the tonB-dependent iron transport system. Antimicrobial Agents and Chemotherapy 1987, 31:497–504.

    Article  PubMed  CAS  Google Scholar 

  19. Pugsley, A. P., Zimmermann, W., Wehri, W.: Highly efficient uptake of a rifampycin derivative via the FhuA-tonB-dependent uptake route in Escherichia coli. Journal of General Microbiology 1987, 133: 3505–3511.

    PubMed  CAS  Google Scholar 

  20. Quinn, J. P., Dudek, E. J., DiVincenzo, C. A., Lucks, D. A., Lerner, S. A.: Emergence of resistance to imi-penem during therapy for Pseudomonas aeruginosa infections. Journal of Infectious Diseases 1986, 289–294.

    Google Scholar 

  21. Hancock, R. E.W.: Alterations in outer membrane permeability. Annual Reviews of Microbiology 1984, 38: 237–264.

    Article  CAS  Google Scholar 

  22. Rivera, M., Hancock, R. E. W., Sawyer, J. G., Haug, A., McGroarty, G. J.: Enhanced binding of polycationic antibiotics to lipopolysaccharide from an aminoglyco-side-supersusceptible tolA mutant strain of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 1988, 32: 649–655.

    Article  PubMed  CAS  Google Scholar 

  23. Moore, R. A., Hancock, R. E. W.: Involvement of outer membrane of Pseudomonas cepacia in aminoglycoside and polymyxin resistance. Antimicrobial Agents and Chemotherapy 1986, 30: 923–926.

    Article  PubMed  CAS  Google Scholar 

  24. Martin, N. L., Beveridge, T. J.: Gentamicin interaction with Pseudomonas aeruginosa cell envelope. Antimicrobial Agents and Chemotherapy 1986, 29: 1079–1087.

    Article  PubMed  CAS  Google Scholar 

  25. Garrod, L. P., Lambert H. P., O’Grady, F.: Antibiotic and chemotherapy. Churchill Livingstone, Edinburgh, 1981.

    Google Scholar 

  26. Angus, B. L., Fyfe, J. A. M., Hancock, R.E.W.: Mapping and characterization of two mutations to antibiotic supersusceptibility in Pseudomonas aeruginosa. Journal of General Microbiology 1987, 133: 2905–2914.

    PubMed  CAS  Google Scholar 

  27. Hinma, R., Yamaguchi, A., Sawai, T.: The effect of lipopolysaccharide on lipid bilayer permeability of β-lactam antibiotics. FEBS Letters 1984, 170: 268–272.

    Article  Google Scholar 

  28. Rocque, W. J., Fesik, S.W., Haug, A., McGroarty, E. J.: Polycation binding to isolated lipopolysaccharide from antibiotic-hypersusceptible mutant strains of Escherichia coli. Antimicrobial Agents and Chemotherapy 1988, 32: 308–313.

    Article  PubMed  CAS  Google Scholar 

  29. Bryan, L. E.: Bacterial resistance and susceptibility to chemotherapeutic agents. Cambridge University Press, Cambridge, 1982.

    Google Scholar 

  30. Nichols, W. W.: On the mechanism of translocation of dihydrostreptomycin across the bacterial cytoplasmic membrane. Biochimica et Biophysica Acta 1987, 895: 11–23.

    Article  PubMed  CAS  Google Scholar 

  31. Chopra, I., Ball, P.: Transport of antibiotics into bacteria. Advances in Microbial Physiology 1982, 23: 183 – 240.

    Article  PubMed  CAS  Google Scholar 

  32. Scherrer, R., Gerhardt, P.: Molecular sieving by the Bacillus megaterium cell wall and protoplast. Journal of Bacteriology 1971, 107: 718–735.

    PubMed  CAS  Google Scholar 

  33. Slack, M. P. E., Nichols, W. W.: Antibiotic penetration through bacterial capsules and exopolysaccharides. Journal of Antimicrobial Chemotherapy 1982, 10: 368–372.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

G. G. Jackson H. D. Schlumberger H. J. Zeiler

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Hancock, R.E.W., Bell, A. (1989). Antibiotic Uptake into Gram-Negative Bacteria. In: Jackson, G.G., Schlumberger, H.D., Zeiler, H.J. (eds) Perspectives in Antiinfective Therapy. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-322-86064-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-86064-4_5

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-528-07979-6

  • Online ISBN: 978-3-322-86064-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics