Advertisement

Radiometer

  • Bernd Vowinkel

Zusammenfassung

Ein Empfänger für die passive Mikrowellenradiometrie muß in der Lage sein, extrem kleine Signalleistungen nachzuweisen. Bei einer technisch festgelegten Empfangsbandbreite kann man aufgrund von Gleichung (1–33) auch sagen, daß der Empfänger möglichst kleine Änderungen der Antennentemperatur nachweisen können sollte. Das heißt, man kann die Grenzempfindlichkeit eines Empfängers durch die kleinste gerade noch nachweisbare Temperaturänderung der Antennentemperatur charakterisieren.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zum 2. Kapitel

Lehrbücher

  1. Collin, R.E.: Foundations for Microwave Engineering. McGraw-Hill, 1966Google Scholar
  2. Evans,G., McLeish, C.W.: RF Radiometer Handbook. Artech House, Inc., 1977Google Scholar
  3. Kraus, J.D.: Radio Astronomy. McGraw-Hill, 1966Google Scholar
  4. Hachenberg, o., Vowinkel, B.: Technische Grundlagen der Radioastronomie. Bibliographisches Institut, 1982Google Scholar
  5. Button, K.J.: Infrared and Millimeter Waves. Academic PressGoogle Scholar

Einzelveröffentlichungen

  1. [1]
    Arams, F.R., Peyton, B.J.: Eight-Millimeter-Wave Maser and Maser-Radiometer System. Proceedings of the IEEE, Januar 1965Google Scholar
  2. [2]
    Kollberg,-E.L., Lewin, P.T.: Traveling-wave Masers for Radio Astronomy in the Frequency Range 20–40 GHz. IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-24, No.11, November 1976Google Scholar
  3. [3]
    Moore, C.R., Clauss, R.C.: A Reflected-Wave Ruby Maser with K-Band Tuning Range and Large Instantaneous Bandwidth. IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-27, No.3, März 1979Google Scholar
  4. [4]
    Edrich, J.: A Cryogenically Cooled Two-Channel Paramp Radiometer for 47 GHz. IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-25, No.4, April 1977Google Scholar
  5. [5]
    Whelehan, J., Kraemer, E., Paczkowski,H.: Millimeter-Wave Paramp with a Solid-state Pump Source. Microwave Journal, November 1973Google Scholar
  6. [6]
    Liechti, C.A.: Microwave Field-Effekt Transistors-1976 IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-24, No.6, Juni 1976Google Scholar
  7. [7]
    Higashisaka, A., Mizuta, T.: 20-GHz Band Monolithic GaAs FET Low-Noise Amplifier. IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-29, No.1, Januar 1981Google Scholar
  8. [8]
    Weinreb, S.: Low-Noise Cooled GaAsFET Amplifier. National Radio Astronomy Observatory, Electronics Division Internal Report No. 202Google Scholar
  9. [9]
    Vowinkel, B.: Cooled 2–4 GHz FET Amplifier. Electronics Letters Vol.16, No.19, September 1980Google Scholar
  10. [10]
    Grote, N.: Heterostruktur-Bauelemente. Physik in unserer Zeit, 15. Jahrg. 1984, Nr.2, S. 51–64MathSciNetCrossRefGoogle Scholar
  11. [11]
    Delagebeaudeuf, D., Nuyen, T.L.: Metal-(n) AlGaAs-GaAs Two-Dimensional Electron Gas FET. IEEE Transactions on Electron Devices, Vol. ED-29, No.6, Juni 1982, S. 955–960CrossRefGoogle Scholar
  12. [12]
    Duh, K.H. et al.: Ultra-Low-Noise Cryogenic High-Electron-Mobility Transistors. IEEE Transactions on Electron Devices, Vol. 35, No.3, März 1988, S. 249–256CrossRefGoogle Scholar
  13. [13]
    Pospieszalski, M.W., Weinreb, S., Norrod, R.D., Harris, R.: FET’s and HEMT’s at Cryogenic Temperatures — Their Properties and Use in Low-Noise Amplifiers. IEEE Transactions on Microwave Theory and Techniques, Vol.36, No.3, März 1988, S. 552–560CrossRefGoogle Scholar
  14. [14]
    Kerr, A.R.: Low-Noise Room-Temperature and Cryogenic Mixers for 80–120 GHz. IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-23, No.10, Oktober 1975Google Scholar
  15. [15]
    Linke, R.A., Schneider, M.V., Cho, A.Y.: Cryogenic Millimeter-Wave Receiver Using Molecular Beam Epitaxy Diodes. IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-26, No.12, Dezember 1978Google Scholar
  16. [16]
    Vowinkel, B.: Millimetre-Wave SSB Mixer with Integrated Local-Oscillator Injection. Electronics Letters, Vol.13, No.8, April 1977Google Scholar
  17. [17]
    Kräutle, H., Sauter, E., Schultz, G.V.: Antenna Characteristics of Whisker Diodes used as Submillimeter Receivers. Infrared Phys.17, 477, 1977, S. 183–189Google Scholar
  18. [18]
    Vowinkel, B.: The Main Beam Efficiency of Corner Cube Reflectors. International Journal of Infrared and Millimeter Waves, Vol. 7, No.1, 1986, S. 155–169CrossRefGoogle Scholar
  19. [19]
    Dolan, G.J., Linke, R.A., Sollner, G., Woody, D.P., Phillips, T.G.: Superconducting Tunnel Junctions as Mixers at 115 GHz. IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-29, No.2, Februar 1981Google Scholar
  20. [20]
    Richards, P.L., Shen, T.M.: Superconductive Devices for Millimeter Wave Detection, Mixing, and Amplification. IEEE Transactions on Electron Devices, Vol. ED-27, No.10, Oktober 1980Google Scholar
  21. [21]
    Hilberath, W., Vowinkel, B., Gundlach, K.H.: 145-GHz-Frontend with Superconductor-Isolator-Superconductor (SIS)-Mixer. SPIE Vol. 598 Instrumentation for Submillimeter Spectroscopy (1985), S. 20–26Google Scholar
  22. [22]
    Blundell, R., Gundlach, K.H.: A Quasiparticle SIN Mixer for the 230 GHz Frequency Range. International Journal of Infared and Millimeter Waves, Vol. 8, No. 12, 1987, S. 1573–1579CrossRefGoogle Scholar
  23. [23]
    Gunn, J.B.: Instabilities of Current in III-v Semiconductors. IBM Journal (1964) April, S. 141–159Google Scholar
  24. [24]
    Ondria, J.: Wideband mechanically tunable W-Band CW Gunn Diode Oscillator. Proceedings Agard Conf. München (1978) Nr. 245, S. 12–1 bis 12–16Google Scholar
  25. [25]
    Barth, H.: A Wideband Backshort Tunable Second Harmonic W-Band Gunn Oscillator. Conf. Digest IEEE MTT-S (1981), S. 284–287Google Scholar
  26. [26]
    Jacobs, K., Vowinkel, B.: Solid State mm-Wave Oscillators with Large Tuning Range. Conf. Digest IEEE MTT-S (1987), S. 863–866Google Scholar
  27. [27]
    Röser, H.P., Wattenbach, R., Dürwen, E.J., Schultz, G.V.: Heterodyn-Spektrometer für das Submillimeter-Wellengebiet. Laser+ Optoelektronik, Juni 1982Google Scholar
  28. [28]
    Archer, J.W.: Millimeter Wavelength Frequency Multipliers. IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-29, No. 6, Juni 1881, S. 552–557Google Scholar
  29. [29]
    Bester, M., Jacobs, K., Vowinkel, B.: Phase-Locked Millimeter Wave Gunn Oscillators with Large Mechanical Tuning Range. Proceedings 13th European Microwave Conf. 1983Google Scholar
  30. [30]
    Vowinkel, B., Grüner, K., Reinert, W.: Cryogenic All Solid-state Millimeter-Wave Receivers for Airborne Radiometry. IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-31, No. 12, Dezember 1983, S. 996–1001CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig 1988

Authors and Affiliations

  • Bernd Vowinkel
    • 1
  1. 1.1. Physikalisches InstitutUniversität KölnKöln 41Deutschland

Personalised recommendations