Skip to main content
  • 33 Accesses

Zusammenfassung

Ein Empfänger für die passive Mikrowellenradiometrie muß in der Lage sein, extrem kleine Signalleistungen nachzuweisen. Bei einer technisch festgelegten Empfangsbandbreite kann man aufgrund von Gleichung (1–33) auch sagen, daß der Empfänger möglichst kleine Änderungen der Antennentemperatur nachweisen können sollte. Das heißt, man kann die Grenzempfindlichkeit eines Empfängers durch die kleinste gerade noch nachweisbare Temperaturänderung der Antennentemperatur charakterisieren.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zum 2. Kapitel

Lehrbücher

  • Collin, R.E.: Foundations for Microwave Engineering. McGraw-Hill, 1966

    Google Scholar 

  • Evans,G., McLeish, C.W.: RF Radiometer Handbook. Artech House, Inc., 1977

    Google Scholar 

  • Kraus, J.D.: Radio Astronomy. McGraw-Hill, 1966

    Google Scholar 

  • Hachenberg, o., Vowinkel, B.: Technische Grundlagen der Radioastronomie. Bibliographisches Institut, 1982

    Google Scholar 

  • Button, K.J.: Infrared and Millimeter Waves. Academic Press

    Google Scholar 

Einzelveröffentlichungen

  1. Arams, F.R., Peyton, B.J.: Eight-Millimeter-Wave Maser and Maser-Radiometer System. Proceedings of the IEEE, Januar 1965

    Google Scholar 

  2. Kollberg,-E.L., Lewin, P.T.: Traveling-wave Masers for Radio Astronomy in the Frequency Range 20–40 GHz. IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-24, No.11, November 1976

    Google Scholar 

  3. Moore, C.R., Clauss, R.C.: A Reflected-Wave Ruby Maser with K-Band Tuning Range and Large Instantaneous Bandwidth. IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-27, No.3, März 1979

    Google Scholar 

  4. Edrich, J.: A Cryogenically Cooled Two-Channel Paramp Radiometer for 47 GHz. IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-25, No.4, April 1977

    Google Scholar 

  5. Whelehan, J., Kraemer, E., Paczkowski,H.: Millimeter-Wave Paramp with a Solid-state Pump Source. Microwave Journal, November 1973

    Google Scholar 

  6. Liechti, C.A.: Microwave Field-Effekt Transistors-1976 IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-24, No.6, Juni 1976

    Google Scholar 

  7. Higashisaka, A., Mizuta, T.: 20-GHz Band Monolithic GaAs FET Low-Noise Amplifier. IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-29, No.1, Januar 1981

    Google Scholar 

  8. Weinreb, S.: Low-Noise Cooled GaAsFET Amplifier. National Radio Astronomy Observatory, Electronics Division Internal Report No. 202

    Google Scholar 

  9. Vowinkel, B.: Cooled 2–4 GHz FET Amplifier. Electronics Letters Vol.16, No.19, September 1980

    Google Scholar 

  10. Grote, N.: Heterostruktur-Bauelemente. Physik in unserer Zeit, 15. Jahrg. 1984, Nr.2, S. 51–64

    Article  MathSciNet  Google Scholar 

  11. Delagebeaudeuf, D., Nuyen, T.L.: Metal-(n) AlGaAs-GaAs Two-Dimensional Electron Gas FET. IEEE Transactions on Electron Devices, Vol. ED-29, No.6, Juni 1982, S. 955–960

    Article  Google Scholar 

  12. Duh, K.H. et al.: Ultra-Low-Noise Cryogenic High-Electron-Mobility Transistors. IEEE Transactions on Electron Devices, Vol. 35, No.3, März 1988, S. 249–256

    Article  Google Scholar 

  13. Pospieszalski, M.W., Weinreb, S., Norrod, R.D., Harris, R.: FET’s and HEMT’s at Cryogenic Temperatures — Their Properties and Use in Low-Noise Amplifiers. IEEE Transactions on Microwave Theory and Techniques, Vol.36, No.3, März 1988, S. 552–560

    Article  Google Scholar 

  14. Kerr, A.R.: Low-Noise Room-Temperature and Cryogenic Mixers for 80–120 GHz. IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-23, No.10, Oktober 1975

    Google Scholar 

  15. Linke, R.A., Schneider, M.V., Cho, A.Y.: Cryogenic Millimeter-Wave Receiver Using Molecular Beam Epitaxy Diodes. IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-26, No.12, Dezember 1978

    Google Scholar 

  16. Vowinkel, B.: Millimetre-Wave SSB Mixer with Integrated Local-Oscillator Injection. Electronics Letters, Vol.13, No.8, April 1977

    Google Scholar 

  17. Kräutle, H., Sauter, E., Schultz, G.V.: Antenna Characteristics of Whisker Diodes used as Submillimeter Receivers. Infrared Phys.17, 477, 1977, S. 183–189

    Google Scholar 

  18. Vowinkel, B.: The Main Beam Efficiency of Corner Cube Reflectors. International Journal of Infrared and Millimeter Waves, Vol. 7, No.1, 1986, S. 155–169

    Article  Google Scholar 

  19. Dolan, G.J., Linke, R.A., Sollner, G., Woody, D.P., Phillips, T.G.: Superconducting Tunnel Junctions as Mixers at 115 GHz. IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-29, No.2, Februar 1981

    Google Scholar 

  20. Richards, P.L., Shen, T.M.: Superconductive Devices for Millimeter Wave Detection, Mixing, and Amplification. IEEE Transactions on Electron Devices, Vol. ED-27, No.10, Oktober 1980

    Google Scholar 

  21. Hilberath, W., Vowinkel, B., Gundlach, K.H.: 145-GHz-Frontend with Superconductor-Isolator-Superconductor (SIS)-Mixer. SPIE Vol. 598 Instrumentation for Submillimeter Spectroscopy (1985), S. 20–26

    Google Scholar 

  22. Blundell, R., Gundlach, K.H.: A Quasiparticle SIN Mixer for the 230 GHz Frequency Range. International Journal of Infared and Millimeter Waves, Vol. 8, No. 12, 1987, S. 1573–1579

    Article  Google Scholar 

  23. Gunn, J.B.: Instabilities of Current in III-v Semiconductors. IBM Journal (1964) April, S. 141–159

    Google Scholar 

  24. Ondria, J.: Wideband mechanically tunable W-Band CW Gunn Diode Oscillator. Proceedings Agard Conf. München (1978) Nr. 245, S. 12–1 bis 12–16

    Google Scholar 

  25. Barth, H.: A Wideband Backshort Tunable Second Harmonic W-Band Gunn Oscillator. Conf. Digest IEEE MTT-S (1981), S. 284–287

    Google Scholar 

  26. Jacobs, K., Vowinkel, B.: Solid State mm-Wave Oscillators with Large Tuning Range. Conf. Digest IEEE MTT-S (1987), S. 863–866

    Google Scholar 

  27. Röser, H.P., Wattenbach, R., Dürwen, E.J., Schultz, G.V.: Heterodyn-Spektrometer für das Submillimeter-Wellengebiet. Laser+ Optoelektronik, Juni 1982

    Google Scholar 

  28. Archer, J.W.: Millimeter Wavelength Frequency Multipliers. IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-29, No. 6, Juni 1881, S. 552–557

    Google Scholar 

  29. Bester, M., Jacobs, K., Vowinkel, B.: Phase-Locked Millimeter Wave Gunn Oscillators with Large Mechanical Tuning Range. Proceedings 13th European Microwave Conf. 1983

    Google Scholar 

  30. Vowinkel, B., Grüner, K., Reinert, W.: Cryogenic All Solid-state Millimeter-Wave Receivers for Airborne Radiometry. IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-31, No. 12, Dezember 1983, S. 996–1001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig

About this chapter

Cite this chapter

Vowinkel, B. (1988). Radiometer. In: Passive Mikrowellenradiometrie. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-86042-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-86042-2_3

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-528-08959-7

  • Online ISBN: 978-3-322-86042-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics