Advertisement

Wissensrepräsentation und Problemlösungsverfahren in Expertensystemen

  • Frank Puppe

Zusammenfassung

Expertensysteme beschäftigen sich mit der Anwendung von Wissensrepräsentationstechniken zur Lösung konkreter Probleme aus der Praxis. In erster Näherung eignen sich Expertensysteme für alle eng begrenzten Problembereiche, für die klare Algorithmen fehlen, die aber von Experten routinemäßig gelöst werden können. Zu ihrer Entwicklung muß die Schlußfolgerungsfahigkeit und das Fachwissen der Experten im Computer rekonstruiert werden. Dazu hat sich die klare Trennung zwischen Problemlösungsmethode und Wissen als vorteilhaft herausgestellt und ist daher für Expertensysteme charakteristisch (s. Abb. 1).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Allen, J.: Maintaining Knowledge about Temporal Intervals, CACM 26, Nr. 11, 832–843,1983.Google Scholar
  2. Barker, V.; O’Connor, D.: Expert Systems for Configuration at Digital: XCON and Beyond, CACM 32, No. 3,298–317,1989.Google Scholar
  3. Biundo, S.; Günter, A.; Hertzberg, J.; Schneeberger, J.; Tank, W.: Planen und Konfigurieren, in Görz, G.(Hrsg.): Einführung in die Künstliche Intelligenz, Kap. 7.2, Addison Wesley, 1993.Google Scholar
  4. Bredeweg, B.; Wielinga, B.: Integrating Qualitative Reasoning Approaches, ECAI-88, 195–201, 1988.Google Scholar
  5. Brewka, G.: Nichtmonotones Schließen, in Görz, G.(Hrsg.): Einführung in die Künstliche Intelligenz, Kap. 1.2, Addison Wesley, 1993.Google Scholar
  6. Brownston, L. et al.: Programming Expert Systems in 0PS5: An Introduction to Rule-Based Programming, Addison-Wesley, 1985.Google Scholar
  7. Charniak, E.; Mcdermott, D.: Introduction to Artificial Intelligence, Addison-Wesley, 1985.Google Scholar
  8. Clancey, W.: Classification Problem Solving, AAAI-84, 49–55, 1984.Google Scholar
  9. Clancey, W.: Heuristic Classification, AI-Journal 20, 215–251, 1985.Google Scholar
  10. Clocksin, W.; Mellish, C.: Programming in PROLOG, Springer, 1981.Google Scholar
  11. Cohen, P. und Feigenbaum, E.: The Handbook of Artificial Intelligence, Vol. 3, Chapter XV: Planning and Problem Solving, 1982.Google Scholar
  12. Cunis, R.; Günter, A.; Strecker, H. (Hrsg.): Das PLAKON-Buch: Ein Expertensystemkern für Planungs-und Konfigurierungsaufgaben in technischen Domänen, Informatik-Fachberichte 266, Springer, 1991.Google Scholar
  13. Davis, R.: Diagnostic Reasoning Based on Structure and Function, AI-Journal 24, 347–411,1984.Google Scholar
  14. De Dombal, F.; Leaper, D.; Horrocks, J.; Stanbland, J.; Mccann, A.: Computer-Aided Diagnosis of Acute Abdominal Pain, British Med. Journal 2, 9–13, 1972.CrossRefGoogle Scholar
  15. De Kleer, J.: An Assumption Based TMS, AI-Journal 28, 127–162, 1986.Google Scholar
  16. De Kleer, J.: How Circuits Work, AI-Journal 24, 205–280, 1984.Google Scholar
  17. Dean, T.; Mcdermott, D.: Temporal Data Base Management, AI-Journal 32,1-57, Universität Würzburg 1987.Google Scholar
  18. Descotte, Y.; Latombe, J.: Making Compromises among Antagonist Constraints in a Planner, AI Journal 27, 183–217, 1985.Google Scholar
  19. Doyle, J.: A Truth Maintenance System, AI-Journal 12, 231–272, 1979.Google Scholar
  20. Elstein, A.; Shulman, L.; Sprafka, S.: Medical Problem Solving, Harvard Univ. Press, 1978.Google Scholar
  21. Eshelman, L.: Mole: A Knowledge-Acquisition Tool for Cover-and-Differentiate Systems, in Marcus, S. (ed.): Automating Knowledge Acquisiton for Expert Systems, Chapter 3, Kluwer Academic Publishers, 1988.Google Scholar
  22. Fagan, L.; Kunz, J.; Feigenbaum, E.; Osborn, J.: Extensions to the Rule-Based Formalism for a Monitoring Task, in Buchanan, B. und Shortliffe, E. (eds.): Rule-Based Expert Systems, Chapter 22, Addison-Wesley, 1984.Google Scholar
  23. Forbus, K.: Qualitative Process Theory, AI-Journal 24, 85–168, 1984.Google Scholar
  24. Friedland, P.; Iwasaki, Y.: The Concept and Implementation of Skeletal Plans, Journal of Automated Reasoning 1, 161–208, 1985.CrossRefGoogle Scholar
  25. Friedland, P.: Knowledge-Based Experiment Design in Molecular Genetics, Stanford Univ., MEMO HPP-79-29, Dissertation, 1979.Google Scholar
  26. Gappa, U.; Puppe, F.; Schewe, S.: Grapfical Knowledge Acquisition for Medical Diagnostic Expert Systems, in Artificial Intelligence in Medicine 5, 185–212, 1993.CrossRefGoogle Scholar
  27. Genesereth, M.; Nilsson, N.: Logical Foundations of Artificial Intelligence, Chapter 6: Non-Monotonic Reasoning, Morgan Kaufmann, 1987.Google Scholar
  28. Goos, K.: Preselection Stragegies for Case Based Classification, to appear in Proc. of German AI-Conference 94, Springer, 1994.Google Scholar
  29. Güsgen, H.-W.: Consat: A System for Constraint Satisfaction, Pitman, 1989.Google Scholar
  30. Hamscher, W.; Console, L.; DE Kleer, J. (eds.): Readings in Model-Based Diagnosis, Morgan Kaufman, 1992.Google Scholar
  31. Harmon, P.; Maus, R.; Morrissey, W.: Expert Systems Tools and Applications, John Wiley & Sons, 1988.Google Scholar
  32. Hentenryck, P.: Constraint Satisfaction in Logic Programming, MIT-Press, 1989.Google Scholar
  33. Iwasaki, Y.: Qualitative Physics, in Barr, A., Cohen, P. und Feigenbaum, E. (eds.): Handbook of Artificial Intelligence, Vol. IV, Chapter XXI, 323-414, Addison-Wesley, 1989.Google Scholar
  34. Kolodner, J.: Case Based Reasoning, Morgan Kaufman, 1993.Google Scholar
  35. Kuipers, B.: Commonsense Reasoning about Causality: Deriving Behaviour from Structure, AI-Journal 24, 169–203, 1984.Google Scholar
  36. Long, W.; Naimi, S.; Criscitiello, M.; Kurzrok, S.: Reasoning about Therapy from a Physiological Model, MEDINFO-86, 756–760, 1986.Google Scholar
  37. Long, W.; Naimi, S.; Criscitiello, M.; Jayes, R.: The Development and Use of a Causal Model for Reasoning About Heart Failure, in Miller, P. (ed.): Selected Topics in Medical Artificial Intelligence, Chapter 4, Springer, 1988.Google Scholar
  38. Marcus, S.: Salt: A Knowledge Acquisition Tool for Propose-and-Revise Systems, in: Marcus, S. (ed.): Automating Knowledge Acquisiton for Expert Systems, Chapter 4, Kluwer Academic Publishers, 1988.Google Scholar
  39. Miller, R.; Pople, H.; Myers, J.: Internist1, an Experimental Computer-Based Diagnostic Consultant for General Internal Medicine, New England Journal of Medicine 307, 468–476, 1982.CrossRefGoogle Scholar
  40. Montag, M.; Struß, P.: Qualitatives und modellbasiertes Schließen, in Görz, G.(Hrsg.): Einführung in die Künstliche Intelligenz, Kap. 1.3, Addison Wesley, 1993.Google Scholar
  41. Patil, R.; Szolovits, P.; Schwartz, W.: Modeling Knowledge of the Patient in Acid-Base and Electrolyte Disorders, in Szolovits, P. (eds.): Artifical Intelligence in Medicine, AAAS Selected Symposium 51, Westview Press, 1982.Google Scholar
  42. Poeck, K.; Puppe, F.: Coke: Efficient Solving of Complex Assignment Problems with the Propose-and-Exchange Method, Proceedings der IEEE Conference on Tools with Artificial Intelligence, 136-143, 1992.Google Scholar
  43. Puppe, F.; Legleitner, T.; Huber, K.: DAX / MED2: A Diagnostic Expert System for Quality Assurance of an Automatic Transmission Control Unit, in Zarri, G. (ed.): Operational Expert Systems in Europe, Pergamon Press, 113-126, 1991 (b).Google Scholar
  44. Puppe, F.: Belief Revision in Diagnosis, GWAI-87, Informatik-Fachberichte 152, Springer, 175-184,1987.Google Scholar
  45. Puppe, F.: Einführung in Expertensysteme, Studienreihe Informatik, Springer, 2. Auflage, 1991 (a).Google Scholar
  46. Puppe, F.: Problemlösungsmethoden in Expertensystemen, Studienreihe Informatik, Springer, 1990.Google Scholar
  47. Shortliffe, E.; Buchanan, B.: A Model of Inexact Reasoning in Medicine, Math. Bioscience 23, 351–379, 1975.CrossRefGoogle Scholar
  48. Stallman, R.; Sussman, G.: Forward Reasoning and Dependency Directed Backtracking in a System for Computer-Aided Circuit Analysis, AI-Journal 9, 135–196, 1977.Google Scholar
  49. Stefik, M.: Planning with Constraints, MOLGEN Part 1; Planning and Meta-Planning, MOLGEN Part 2, AI-Journal 16, 111–169, 1981.Google Scholar
  50. Struß, P.; Dressler, O.: “Physical Negation” — Integrating Fault Models into the General Diagnostic Engine, IJCAI-89, 1318–1323, 1989.Google Scholar
  51. Struß, P. (ed.): Wissensrepräsentation, Oldenbourg, 1991.Google Scholar
  52. Van Melle, W.: System Aids in Constructing Consultation Programs, UMI Research, 1981.Google Scholar
  53. Von Luck, K.; Owsnicki-Klewe, B.: KL-ONE, eine Einführung, in [Struß 91], 103-122, 1991.Google Scholar
  54. Voss, A.; Voss, H.: A Uniform View on Local Constraint Propagation Methods, in Proc. der KIFS-87, Springer, Informatik-Fachberichte 202, 1989.Google Scholar

Copyright information

© Betriebswirtschaftlicher Verlag Dr. Th. Gabler GmbH, Wiesbaden 1994

Authors and Affiliations

  • Frank Puppe

There are no affiliations available

Personalised recommendations