Skip to main content

Configurations of Simple Composite Nucleon Systems

  • Chapter
  • 10 Accesses

Part of the book series: Clustering Phenomena in Nuclei ((CPN,volume 2))

Abstract

Simple composite nucleon systems were characterized in section 6.2 by the assumption that the internal orbital state of each composite system be stable under internal permutations. The occupation numbers of these composite particles then form a weight w = (w1w2 ... wj) and the stability group is the group of the weight S(w). The orbital partition f is established through a Gelfand pattern q. To this assumption on the permutational structure of the orbital states we add the specification of any internal state as an unexcited oscillator state. With this choice we obtain in sections 7.2 and 7.3 closed analytic expressions for the normalization and interaction kernels. In section 7.4 we choose j = 3 and pass from the kernels of the operators to the oscillator representation. The oscillator representation will be used in section 10 to study states of the lightest nuclei.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama, Y., A. Arima, and T. Sebe, Nucl. Phys. A138 (1969) 273

    Google Scholar 

  2. Bargmann, V., Comm. Pure and Appl. Math. 14 (1961) 187

    Google Scholar 

  3. Bargmann, V., Rev. Mod. Phys. 34 (1962) 829

    Google Scholar 

  4. Baird, G. E. and L. C. Biedenharn, J. Math. Phys. 5 (1964) 1723

    Google Scholar 

  5. Bargmann, V., Comm. Pure and Appl. Math. 20 (1967) 1

    Google Scholar 

  6. Bargmann, V., Group representations in Hilbert spaces of analytic functions, in: Analytic methods in mathematical physics, ed. by R. P. Gilbert and R. G. Newton, New York 1968

    Google Scholar 

  7. Bacry, H., A. Grossmann and J. Zak, Geometry of generalized coherent states, in: Proc. IV. Int. Colloquium on Group Theoretical Methods in Physics, Nijmegen 1975, Springer Lectures Notes in Physics, Vol. 50, ed. by A. Janner, T. Janssen and M. Boon, Springer, Berlin, Heidelberg, New York, 1976

    Google Scholar 

  8. Bacry, H., Lectures on group theory and particle theory, Gordon and Breach, New York 1977

    Google Scholar 

  9. Barut, A. O. and R. Raczka, Theory of group representations and applications, Polish Scientific Publishers, Warsaw 1977

    Google Scholar 

  10. Biedenharn, L. C., J. D. Louck, E. Chacon, and M. Ciftan, J. Math. Phys. 13 (1972) 1957

    Google Scholar 

  11. Biedenharn, L. C. and J. D. Louck, J. Math. Phys. 13 (1972) 1985

    Google Scholar 

  12. Brody, T. A. and M. Moshinsky, Rev. Mex. Fis. 9 (1960) 181

    Google Scholar 

  13. Brink, D. M. and A. Weiguny, Nucl. Phys. A120 (1968) 59

    Google Scholar 

  14. Brunei, M. and P. Kramer, Complex extension of the representation of the symplectic group associated with the canonical commutation relations, in; Proc. IV. Int. Colloquium on Group Theoretical Methods in Physics, Nijmegen 1975, Springer Lecture Notes in Physics, vol. 50, ed. by A. Janner, T. Janssen, and M. Boon, Springer, Berlin, Heidelberg, New York, 1976

    Google Scholar 

  15. Brunet, M. and P. Kramer, Semigroups of length increasing transformations, Rep. Math. Phys. 15 (1979) 287

    Google Scholar 

  16. Brunet, M. and P. Kramer, Complex extension of the representation of the symplectic group associated with the canonical commutation relations, Rep. Math. Phys., to be published

    Google Scholar 

  17. Burdet, C. M. N., C. Maguin, and A. Partensky, in: Clustering Phenomena in Nuclei, IAEA, Vienna 1969

    Google Scholar 

  18. Cohen, S. and D. Kurath, Nucl. Phys. 73 (1965) 1

    Google Scholar 

  19. Coleman, A. J., The symmetric group made easy, in: Advances in Quantum Chemistry, ed. by P.-O. Löwdin, vol. 4, Academic Press, New York 1968

    Google Scholar 

  20. Edmonds, A. R., Angular Momentum in Quantum Mechanics, Princeton University Press, Princeton 1957

    Google Scholar 

  21. Elliott, J. P., J. Hope, and H. A. Jahn, Proc. Roy. Soc. A218 (1953) 345

    Google Scholar 

  22. Elliott, J. P., Proc. Roy. Soc. A245 (1958) 128

    Google Scholar 

  23. Elliott, J. P., Proc. Roy. Soc. A245 (1958) 562

    Google Scholar 

  24. Franzini, P. and L. A. Radicati, Phys. Lett. 6 (1963) 322

    Google Scholar 

  25. Gelfand, I. M. and M. L. Zetlin, Dokl. Akad. Nauk SSSR 71 (1950) 8, 825

    Google Scholar 

  26. Glauber, R. J., Phys. Rev. 131 (1963) 2766

    Google Scholar 

  27. Goldberg, D. A., J. B. Marion, and S. J. Wallace (Eds.), Proc. Int. Conf. on Clustering Phenomena in Nuclei II, College Park 1975, United States Energy Research and Development Administration ORO-4856–26

    Google Scholar 

  28. Griffin, J. J. and J. A. Wheeler, Phys. Rev. 108 (1957) 311

    Google Scholar 

  29. Grossmann, A., Geometry of real and complex canonical transformations in quantum mechanics, in: Proc. VI. Int. Colloquium on Group Theoretical Methods in Physics, Tübingen 1977, Springer Lecture Notes in Physics, vol. 79, ed. by P. Kramer and A. Rieckers, Springer, Berlin, Heidelberg, New York 1978

    Google Scholar 

  30. Hall, M., The theory of groups, MacMillan, New York 1959

    Google Scholar 

  31. Hamermesh, M., Group theory and its application to physical problems, Addison-Wesley, Reading 1962

    Google Scholar 

  32. Hecht, K. T. and S. Ch. Pang, J. Math. Phys. 10 (1969) 1571

    Google Scholar 

  33. Hecht, K. T. and W. Zahn, in: Proc. Int. Conf. on Clustering Aspects of Nuclear Structure and Nuclear Reactions, Winnipeg 1978, AIP Conf. Proc, New York 1978

    Google Scholar 

  34. Hill, D. L. and J. A. Wheeler, Phys. Rev. 89 (1953) 1102

    Google Scholar 

  35. Horie, H., J. Phys. Soc. Japan 19 (1964) 1783

    Google Scholar 

  36. Holman, W. J. and L. C. Biedenharn, in: Group Theory and its applications, vol. 2, ed. by E. M. Loebl, Academic Press, New York 1971

    Google Scholar 

  37. Horiuchi, H., Progr. Theor. Phys. 62 (1977) 90

    Google Scholar 

  38. IAEA, Proc. Int. Conf. on Clustering Phenomena in Nuclei, Bochum 1969, IAEA, Vienna 1969

    Google Scholar 

  39. Itzykson, C., Commun. Math. Phys. 4 (1967) 92

    Google Scholar 

  40. Jahn, H. A. and H. van Wieringen, Proc. Roy. Soc. A209 (1951) 50

    Google Scholar 

  41. Jansen, L. and R. W. J. Roël, Pauli principle and indirect exchange phenomena in molecules and solids, in: Groups, Systems, and Many-Body Physics, ed. by P. Kramer and M. Dal Cin, Vieweg, Braunschweig 1980

    Google Scholar 

  42. John, G. and P. Kramer, Nucl. Phys. A204 (1973) 203

    Google Scholar 

  43. John, G. and T. H. Seligman, Nucl. Phys. A236 (1974) 397

    Google Scholar 

  44. Kaplan, I. G., JETP (USSR) 41 (1961) 560,

    Google Scholar 

  45. Kaplan, I. G.,Soviet Phys. JETP 14 (1962) 401

    Google Scholar 

  46. Kaplan, I. G., JETP (USSR) 41 (1961) 790,

    Google Scholar 

  47. Kaplan, I. G.,Soviet Phys. JETP 14 (1961) 568

    Google Scholar 

  48. Klein, D. J., Finite groups and semisimple algebras in quantum mechanics, in: Group theory and its applications, vol. 3, ed. by E. M. Loebl, Academic Press, New York 1975

    Google Scholar 

  49. Kramer, P., Z. Naturforschg. 21a (1966) 657

    Google Scholar 

  50. Kramer, P., Z. Phys. 205 (1967) 181

    Google Scholar 

  51. Kramer, P., Z. Phys. 216 (1968) 68

    Google Scholar 

  52. Kramer, P., J. Math. Phys. 9 (1968) 639

    Google Scholar 

  53. Kramer, P. and M. Moshinsky, Group theory of harmonic oscillators and nuclear structure, in: Group theory and its applications, ed. by E. M. Loebl, vol. 1, Academic Press, New York 1968

    Google Scholar 

  54. Kramer, P. and T. H. Seligman, Nucl. Phys. A123 (1969) 161

    Google Scholar 

  55. Kramer, P. and T. H. Seligman, Nucl. Phys. A136 (1969) 545

    Google Scholar 

  56. Kramer, P. and T. H. Seligman, Z. Physik 219 (1969) 105

    Google Scholar 

  57. Kramer, P., Group theory and the supermultiplet scheme, in: Clustering Phenomena in Nuclei, IAEA, Vienna 1969

    Google Scholar 

  58. Kramer, P., Rev. Mex. Fis. 19 (1970) 241

    Google Scholar 

  59. Kramer, P. and T. H. Seligman, Nucl. Phys. A186 (1972) 49

    Google Scholar 

  60. Kramer, P. and D. Schenzle, Nucl. Phys. A204 (1973) 593

    Google Scholar 

  61. Kramer, P. and D. Schenzle, Rev. Mex. Fis. 22 (1973) 25

    Google Scholar 

  62. Kramer, P., Permutation group in light nuclei, in: Symmetry properties of nuclei, Proc. of the 15th Solvay Conference on Physics, Gordon and Breach, London 1974

    Google Scholar 

  63. Kramer, P., M. Moshinsky, and T. H. Seligman, Complex extensions of canonical transformations and quantum mechanics, in: Group theory and its applications, vol. 3, ed. by E. M. Loebl, Academic Press, New York 1975

    Google Scholar 

  64. Kramer, P., Finite representations of the unitary group and their applications in many-body physics, in: Group Theoretical Methods in Physics, ed. by R. T. Sharp and B. Kolman, Academic Press, New York 1977

    Google Scholar 

  65. Kramer, P. and M. Dal Cin (Eds.), Groups, Systems, and Many-Body Physics, Vieweg, Braunschweig 1980

    Google Scholar 

  66. Lauritsen, T. and F. A. Ajzenberg-Selove, Nucl. Phys. A79 (1966) 1

    Google Scholar 

  67. Louck, J., Amer. J. Phys. 38 (1970) 3

    Google Scholar 

  68. Louck, J. D. and L. C. Biedenharn, J. Math. Phys. 14 (1973) 1336

    Google Scholar 

  69. Louck, J. D., Applications of the boson polynomials of U(n) to physical problems, in: Proc. VII. Int. Colloquium on Group Theoretical Methods in Physics, Austin 1978, ed. by W. Beiglböck, Lecture Notes in Physics, vol. 94 Springer, Berlin 1979

    Google Scholar 

  70. Mackey, G. F., Mathematical foundations of quantum mechanics, Benjamin, New York 1963

    Google Scholar 

  71. Mahmoud, H. and R. K. Cooper, Annals of Physics 26 (1964) 222

    Google Scholar 

  72. Moshinsky, M., J. Math. Phys. 4 (1963) 1128

    Google Scholar 

  73. Moshinsky, M., Group theory and the many-body problem. Gordon and Breach, New York 1968

    Google Scholar 

  74. Moshinsky, M. and T. H. Seligman, Ann. Phys. 66 (1971) 311

    Google Scholar 

  75. Moshinsky, M. and C. Quesne, J. Math. Phys. 12 (1971) 1772

    Google Scholar 

  76. Moshinsky, M. and C. Quesne, Oscillator systems, in: Proc. 15th Solvay Conf. on Physics, Gordon and Breach, London 1974

    Google Scholar 

  77. Nagel, J. G. and M. Moshinsky, J. Math. Phys. 6 (1965) 682

    Google Scholar 

  78. Neumann, J. von, Math. Ann. 104 (1931) 570

    Google Scholar 

  79. Neudatchin, V. G., V. G. Shevchenko, and N. P. Yudin, Physics Letters 10 (1964) 180

    Google Scholar 

  80. Neudatchin, V. G. and Yu. F. Smirnov, Atomic Energy Review 3 (1965) 157

    Google Scholar 

  81. Neudatchin, V. G. and Yu. F. Smirnov, Nuclear Associations in Light Nuclei, Moscow 1969

    Google Scholar 

  82. Oers, W. T. H. van, J. P. Svenne, J. S. C. McKee, and W. R. Falk (Eds.), Proc. Int. Conf. on Clustering Aspects of Nuclear Structure and Nuclear Reactions, Winnipeg 1978, AIP Conf. Proc, New York 1978

    Google Scholar 

  83. Robinson, G. de B., Representation theory of the symmetric group, University of Toronto Press, Toronto 1961

    Google Scholar 

  84. Roman, P., Some modern mathematics for physicists and other outsiders, Pergamon, New York 1975

    Google Scholar 

  85. Roël, R. W. J., On the many-body formalism: Perturbation theory for interacting systems, the quantum mechanical eigenvalue problem and double coset decomposition of the symmetric group, Doctoral Thesis, University of Amsterdam 1976

    Google Scholar 

  86. Segal, I. E., Mathematical problems of relativistic physics, Proc. Summer Seminar on Appl. Math., Boulder Colorado, 1960, Amer. Math. Soc, Providence, Rhode Island, 1963

    Google Scholar 

  87. Seligman, T. H., Double coset decompositions of finite groups and the many-body problem, Habilitationsschrift, Universität Tübingen 1974

    Google Scholar 

  88. Seligman, T. H. and W. Zahn, J. Phys. G2 (1976) 79

    Google Scholar 

  89. Souriau, J.-M., Structure des systèmes dynamiques, Dunod, Paris 1970

    Google Scholar 

  90. Souriau, J. M., Construction explicite de l’indice de Maslov. Applications, in: Proc. IV. Int. Colloquium on Group Theoretical Methods in Physics, Nijmegen 1975, Springer Lecture Notes in Physics, vol. 50, ed. by A. Janner, T. Janssen, and M. Boon, Springer, Berlin 1976

    Google Scholar 

  91. Smirnov, Yu. F., Translationally invariant shell model, in: Proc. Int. Conf. on Clustering Phenomena in Nuclei, Bochum 1969, IAEA, Vienna 1969

    Google Scholar 

  92. Sternberg, S., Some recent results on the metaplectic representation, in: Proc. VI. Int. Colloquium on Group Theoretical Methods in Physics, Tübingen 1977, Springer Lecture Notes in Physics, vol. 79, ed. by P. Kramer and A. Rieckers, Springer, Berlin, Heidelberg New York 1978

    Google Scholar 

  93. Sünkel, W. and K. Wildermuth, Phys. Lett. 41B (1972) 439

    Google Scholar 

  94. Sullivan, J. J., J. Math. Phys. (N. Y.) 14 (1973) 387

    Google Scholar 

  95. Sünkel, W., Phys. Lett. 65B (1976) 419

    Google Scholar 

  96. Vanagas, V. V. and A. K. Petrauskas, Yad. Fiz. 5 (1967) 555;

    Google Scholar 

  97. Vanagas, V. V. and A. K. Petrauskas, Sov. J. Nucl. Phys. 5 (1967) 393

    Google Scholar 

  98. Vanagas, V., Algebraic Methods in Nuclear Theory, Vilnius 1971

    Google Scholar 

  99. Weyl, H., The theory of groups and quantum mechanics, Princeton University Press, Princeton 1931

    Google Scholar 

  100. Weyl, H., The classical groups, Princeton University Press, Princeton 1946

    Google Scholar 

  101. Wheeler, J. A., Phys. Rev. 52 (1937) 1083

    Google Scholar 

  102. Wheeler, J. A., Phys. Rev. 52 (1937) 1107

    Google Scholar 

  103. Wigner, E. P., Phys. Rev. 51 (1937) 51

    Google Scholar 

  104. Wildermuth, K. and Y. C. Tang, A unified theory of the nucleus, Clustering Phenomena in Nuclei, vol. 1, ed. by K. Wildermuth and P. Kramer, Vieweg, Braunschweig 1977

    Google Scholar 

  105. Wolf, K. B., The Heisenberg-Weyl Ring in Quantum Mechanichs, in: Group theory and its applications, vol. 3, ed. by E. M. Loebl, Academic Press, New York 1975

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig

About this chapter

Cite this chapter

Kramer, P., John, G., Schenzle, D. (1981). Configurations of Simple Composite Nucleon Systems. In: Group Theory and the Interaction of Composite Nucleon Systems. Clustering Phenomena in Nuclei, vol 2. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-85663-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-85663-0_7

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-528-08449-3

  • Online ISBN: 978-3-322-85663-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics