Advertisement

Modellanpassung

  • Ralf Wagner
Part of the Marken- und Produktmanagement book series (MPM)

Zusammenfassung

Da die Struktur des durch Gleichung 5.29 bestimmten Modells viele Übereinstimmungen mit der Struktur des aus der Kaufverhaltensanalyse bekannten Polya-Modells in der erweiterten Version von Wagner, Taudes (1991) aufweist, ist ein Rückgriff auf die Erfahrungen im Zusammenhang mit der Kalibrierung dieses Modells naheliegend. In der einschlägigen Literatur werden u.a. folgende Verfahren zur Kalibrierung stochastischer Modelle im Marketing diskutiert (vgl. Wagner (1988); Decker (1994, S. 130); Röhle (1998, S. 93 f.)):
  • Momenten-Methode

  • Mean-and-Zero-Methode

  • Minimum-x2-Methode

  • Maximum-Likelihood-Methode

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Die in der einschlägigen Literatur dokumentierten Anwendungen der Momenten-Methode zur Kalibrierung stochastischer Modelle beziehen sich auf die Bestimmung weniger Parameter, so daß im Regelfall nur zwei Momente herangezogen werden.Google Scholar
  2. 2.
    Im Hinblick auf die Schätzung der Parameter von modellexogenen Einflüssen verweisen die Autoren auf die Möglichkeit eines zweistufigen Vorgehens, bei dem zunächst eine modellendogene Ausprägung der zu untersuchenden Zählvariable auf der Basis stochastischer Prozesse ohne Berücksichtigung exogener Variablen bestimmt wird, um dann in einem nächsten Schritt die Abweichung dieser von der real beobachteten Ausprägung anhand ökonometrischer Techniken zu evaluieren (vgl. Morrison, Schmittlein (1988b, S. 165 f.)).Google Scholar
  3. 3.
    Für ein Modell auf der Basis eines Verweildauerprozesses begründen und demonstrieren die Autoren deutliche Verzerrungen der Kalibrierungsresultate auf Basis der Momenten-Methode.Google Scholar
  4. 4.
    Zu beachten ist, daß der Einsatz der Promotion-Instrumente sowohl in verschiedenen Outlets einer Einzelhandelskette als auch in den Outlets unterschiedlicher Einzelhandelsketten sehr heterogen ist (vgl. Abschnitt 3.3.1), wodurch die Annahme der Unabhängigkeit der Beobachtungen aus verschiedenen Outlets („cross-sectional“-Analyse) gerechtfertigt erscheint.Google Scholar
  5. 5.
    Diese Parameter sind aufgrund der notwendigen logischen Konsistenz grundsätzlich im Modell zu belassen, auch wenn die Parameter sich als nicht signifikant von null verschieden erweisen sollten. Eine analoge Argumentation bieten Cooper, Nakanishi (1988, S. 116 ff.) im Kontext der Log-Centering-Transformation bei der Auswertung von POS-Scannerdaten.Google Scholar
  6. 6.
    Die auf das Niveau des Gesamtmarkts aggregierten Analysen in der einschlägigen Literatur basieren auf den folgenden Stichprobenumfängen: Alsem ET AL. (1989): Markt 1: 24 Beobachtungen Markt 2: 30 Beobachtungen Markt 3: 36 Beobachtungen Leeflang, Wittink (1992, 1996): 76 Beobachtungen Kumar (1994): Markt 1, Markt 2, Markt 3: je 52 Beobachtungen Markt 4: 44 Beobachtungen Brodie ET AL. (1996): Markt 1, Markt 2: je 60 Beobachtungen Markt 3: 104 BeobachtungenGoogle Scholar
  7. 7.
    Die Transformation erfolgt analog zur Transformation von Nutzenfunktionen (vgl. beispielsweise Decker, Wagner (1999, S. 555 ff.)), wie sie bereits im Kontext der Konsumentenverhaltensanalyse, insbesondere in der Analyse diskreter Auswahlentscheidungen, etabliert ist (vgl. Cooper, Nakanishi (1988, S. 70 ff.); Klapper (1998, S. 58 ff.)). Der Nutzen eines Unternehmens, der mit der Wahlentscheidung hinsichtlich des Einsatzes eines Promotion-Instruments verbunden ist, wird zur Vereinfachung der Modellbildung häufig mit dem erwarteten Profit unter Berücksichtigung erwarteter Konkurrenzreaktionen gleichgesetzt (vgl. Lilien ET AL. (1992, S. 705 f.); Moorthy (1993, S. 145)). Das Nutzenkonzept in der Modellierung diskreter Auswahlentscheidungen ist jedoch allgemeiner und erlaubt auch die Berücksichtigung alternativer Ziele, wie beispielsweise Umsatzsteigerungen oder die Marktanteilsmaximierung als Surrogat für die Profit-maximierung (vgl. Armstrong, Collopy (1996, S. 188)). Hinsichtlich der Zulässigkeit solcher Transformationen ist sicherzustellen, daß ausschließlich strikt monoton positive, affine Transformationen vorgenommen werden, damit die originären Präferenzrelationen erhalten bleiben (vgl. Binmore (1992, S. 112 f.)). Dadurch ist u.a. gewährleistet, daß die Auswahlwahrscheinlichkeiten für einzelne Instrumente nicht durch die Transformation geändert werden. Exemplarisch führen Maier und Weiss (1990, S. 108) die Addition einer Konstanten, die Multiplikation mit einer positiven Konstanten, das Logarithmieren und das Exponieren auf.Google Scholar
  8. 8.
    Diese Transformation bietet den weiteren Vorteil, daß die Parameter leichter zu interpretieren sind, da die Basis, die mit dem jeweiligen Parameter potenziert wird, ñimt + 1 ≥ 1 erfüllt.Google Scholar
  9. 9.
    Diese Beziehung wird auch aus der Berechnungsvorschrift für den erwarteten Einsatz eines Instruments (Gleichung 6.14) deutlich.Google Scholar
  10. 10.
    Leeflang, Wittink (1996, S. 113) geben den Anteil der erklärten Varianz in einer Spannweite von R2= 0, 32 bis R2= 0, 63 an.Google Scholar
  11. 11.
    Brodie ET AL. (1996, S. 382) geben den Anteil der erklärten Varianz in einer Spannweite von R2= 0, 56 bis R2 = 0, 91 an. Für einen untersuchten Markt konnte kein gewichtetes R2ermittelt werden. Die Erklärung der Varianz des Einsatzes einzelner Instrumente reichte von ¯R2 = 0, 33 bis ¯R2 = 0,77.Google Scholar
  12. 12.
    Der auf dem Niveau des Gesamtmarkts aggregierte Einsatz der Instrumente für die Produkte des Herstellers m= 1 weist Standardabweichungen von σ11 = 9, 89, σ21 = 6, 22 und σ31 = 7, 66 auf. Die Standardabweichungen des aggregierten Einsatzes der Instrumente fallen mit σ15 = 25,14, σ25 = 15,47 und σ35 = 20,08 sowie σ17 = 20,91, σ27 = 13,03 und σ37 = 16,36 für die Produkte der Hersteller m= 5 und m = 7 deutlich höher aus.Google Scholar
  13. 13.
    Auf die Angabe der Theil’schen Ungleichheits-Koeffizieiiten wurde im Interesse einer übersichtlichen Darstellungsweise verzichtet. Sie können Abbildung 6.7 entnommen werden.Google Scholar

Copyright information

© Betriebswirtschaftlicher Verlag Dr. Th. Gabler GmbH, Wiesbaden, und Deutscher Universitäts-Verlag GmbH, Wiesbaden 2001

Authors and Affiliations

  • Ralf Wagner

There are no affiliations available

Personalised recommendations