Skip to main content

A Hybrid Model of Propagated Excitation in the Ventricular Myocardium

  • Chapter

Abstract

The anisotropic conductivity of cardiac tissue and features of the anatomical architecture of the heart, such as the transmural rotation of fibers from the epicardium to the endocardium or their spiral rotation near the apex [1, 2], have a profound influence on the heart’s propagated excitation and the generation of extracardiac electric potential and magnetic field—as has been substantiated by many experimental findings (e.g.[3, 4]). Therefore it is of great interest to study the propagation phenomena and the associated electromagnetic field in mathematical models that represent realistically the anisotropic heart. We have addressed this problem, and the result of our efforts is a model [5, 6, 7] whose salient features related to the propagation algorithm are highlighted in this paper; a companion paper [8] deals with features related to extracardiac electric and magnetic fields.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.D. Streeter Jr. Gross morphology and fiber geometry of the heart. In R.M. Berne, N. Sperelakis, and S.R. Geiger, editors, Handbook of physiology — Section 2: The cardiovascular system, Volume I: The heart, pages 61-112, American Physiological Society, Bethesda, MD, 1979.

    Google Scholar 

  2. P.M.F. Nielson, I.L. LeGrice, B.M. Smaill, and P.J. Hunter. A mathematical model of the geometry and fibrous structure of the heart. Am J Physiol, 260:H1365–H1378, 1991.

    Google Scholar 

  3. S. Watabe, B. Taccardi, R.L. Lux, and P.D. Ershler. Effect of non-transmural necrosis on epicardial potential fields: correlation with fiber direction. Circulation, 82:2115–2127, 1990.

    Article  Google Scholar 

  4. D.J. Staton, R.N. Friedman, and J.P. Wikswo Jr. High-resolution SQUID magnetocar-diographic mapping of action currents in canine cardiac slices. Circulation, 84:11–667, 1991.

    Google Scholar 

  5. L.J. Leon and B.M. Horáček. Computer model of excitation and recovery in the anisotropic myocardium. J Electrocardiol, 24:1–41, 1991.

    Article  Google Scholar 

  6. J. Nenonen, J.A. Edens, L.J. Leon, and B.M. Horáček. Computer model of propagated excitation in the anisotropic human heart: I. Implementation and algorithms. In Computers in cardiology, pages 545–548, IEEE Computer Society Press, Los Alamitos, CA, 1992.

    Google Scholar 

  7. J. Nenonen, J.A. Edens, L.J. Leon, and B.M. Horáček. Computer model of propagated excitation in the anisotropic human heart: II. Simulation of extracardiac fields. In Computers in cardiology, pages 217–220, IEEE Computer Society Press, Los Alamitos, CA, 1992.

    Google Scholar 

  8. J. Nenonen and B.M. Horáček. Simulation of the extracardiac electromagnetic field due to propagated excitation in the anisotropic ventricular myocardium. In this volume.

    Google Scholar 

  9. R. Plonsey and R.C. Barr. Mathematical modeling of electrical activity of the heart. J Electrocardiol, 20:219–226, 1987.

    Article  Google Scholar 

  10. D.B. Geselowitz and W.T. Miller III. A bidomain model for anisotropic cardiac muscle. Ann Biomed Eng, 11:191–206, 1983.

    Article  Google Scholar 

  11. P. Colli Franzone, L. Guerri, and C. Viganotti. Oblique dipole layer potentials applied to electrocardiology. J Math Biol, 17:93–124, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Colli Franzone, L. Guerri, and S. Tentoni. Mathematical modelling of the excitation process in myocardial tissue: influence of fiber rotation on wavefront propagation and potential field. Math Biosci, 101:155–235, 1990.

    Article  MATH  Google Scholar 

  13. P. Colli Franzone and L. Guerri. Spreading of excitation in 3-D models of the anisotropic cardiac tissue. I. Validation of the eikonal model. Math Biosci, 113:145–209, 1993.

    Article  MATH  Google Scholar 

  14. J.P. Keener. An eikonal-curvature equation for action potential propagation in myocardium. J Math Biol, 29:629–651, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Plonsey. Bioelectric phenomena. McGraw-Hill, New York, 1969.

    Google Scholar 

  16. D.B. Geselowitz. On bioelectric potentials in an inhomogeneous volume conductor. Biophys J, 7:1–11, 1967.

    Article  Google Scholar 

  17. R. Plonsey and R.C. Barr. Current flow patterns in two-dimensional anisotropic bisyn-cytia with normal and extreme conductivities. Biophys J, 45:557–571, 1984.

    Article  Google Scholar 

  18. J.J.B. Jack, D. Noble, and R.W. Tsien. Electric current flow in excitable cells. Clarendon Press, Oxford, 1983. (2nd ed).

    Google Scholar 

  19. A.L. Hodgkin and W.A. Rushton. The electrical constants of crustacean nerve fiber. Proc R Soc Biol Sci, 133:444–479, 1946.

    Article  Google Scholar 

  20. D. Durrer, R.Th. van Dam, G.E. Freud, M.J. Janse, F. L. Meijler, and R. C. Arzbaecher. Total excitation of the isolated human heart. Circulation, 41:899–912, 1970.

    Google Scholar 

  21. W.J. Eifler, E. Macchi, H.J. Ritsema van Eck, B.M. Horáček, and P.M. Rautaharju. Mechanism of generation of body surface electrocardiographc P-waves in normal, middle, and lower sinus rhythms. Circ Res, 48:168–182, 1981.

    Google Scholar 

  22. F. A. Roberge, A. Vinet, and B. Victorri. Reconstruction of propagated electrical activity with a two dimensional model of anisotropic heart muscle. Circ Res, 58:461–475, 1986.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden

About this chapter

Cite this chapter

Horáček, B.M., Nenonen, J., Edens, J.A., Leon, L.J. (1996). A Hybrid Model of Propagated Excitation in the Ventricular Myocardium. In: Ghista, D.N. (eds) Biomedical and Life Physics. Vieweg+Teubner Verlag. https://doi.org/10.1007/978-3-322-85017-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-322-85017-1_17

  • Publisher Name: Vieweg+Teubner Verlag

  • Print ISBN: 978-3-322-85019-5

  • Online ISBN: 978-3-322-85017-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics